語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Periodic monopoles and difference mo...
~
Mochizuki, Takuro.
FindBook
Google Book
Amazon
博客來
Periodic monopoles and difference modules
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Periodic monopoles and difference modules/ by Takuro Mochizuki.
作者:
Mochizuki, Takuro.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xviii, 324 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Geometry, Differential. -
電子資源:
https://doi.org/10.1007/978-3-030-94500-8
ISBN:
9783030945008
Periodic monopoles and difference modules
Mochizuki, Takuro.
Periodic monopoles and difference modules
[electronic resource] /by Takuro Mochizuki. - Cham :Springer International Publishing :2022. - xviii, 324 p. :ill., digital ;24 cm. - Lecture notes in mathematics,v. 23001617-9692 ;. - Lecture notes in mathematics ;v. 2300..
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis-Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi-Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang-Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
ISBN: 9783030945008
Standard No.: 10.1007/978-3-030-94500-8doiSubjects--Topical Terms:
523835
Geometry, Differential.
LC Class. No.: QA641 / .M63 2022
Dewey Class. No.: 516.36
Periodic monopoles and difference modules
LDR
:02068nmm a2200325 a 4500
001
2299157
003
DE-He213
005
20220223015739.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030945008
$q
(electronic bk.)
020
$a
9783030944995
$q
(paper)
024
7
$a
10.1007/978-3-030-94500-8
$2
doi
035
$a
978-3-030-94500-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA641
$b
.M63 2022
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
072
7
$a
PBMP
$2
thema
082
0 4
$a
516.36
$2
23
090
$a
QA641
$b
.M688 2022
100
1
$a
Mochizuki, Takuro.
$3
1005893
245
1 0
$a
Periodic monopoles and difference modules
$h
[electronic resource] /
$c
by Takuro Mochizuki.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xviii, 324 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
1617-9692 ;
$v
v. 2300
520
$a
This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis-Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi-Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang-Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduate students and researchers in differential and algebraic geometry, as well as in mathematical physics.
650
0
$a
Geometry, Differential.
$3
523835
650
0
$a
Yang-Mills theory.
$3
731055
650
1 4
$a
Differential Geometry.
$3
891003
650
2 4
$a
Mathematical Physics.
$3
1542352
650
2 4
$a
Algebraic Geometry.
$3
893861
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in mathematics ;
$v
v. 2300.
$3
3596429
856
4 0
$u
https://doi.org/10.1007/978-3-030-94500-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9441049
電子資源
11.線上閱覽_V
電子書
EB QA641 .M63 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入