語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Privacy-preserving machine learning
~
Li, Jin.
FindBook
Google Book
Amazon
博客來
Privacy-preserving machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Privacy-preserving machine learning/ by Jin Li ... [et al.].
其他作者:
Li, Jin.
出版者:
Singapore :Springer Singapore : : 2022.,
面頁冊數:
viii, 88 p. :ill. (some col.), digital ;24 cm.
內容註:
Introduction -- Secure Cooperative Learning in Early Years -- Outsourced Computation for Learning -- Secure Distributed Learning -- Learning with Differential Privacy -- Applications - Privacy-Preserving Image Processing -- Threats in Open Environment -- Conclusion.
Contained By:
Springer Nature eBook
標題:
Machine learning - Security measures. -
電子資源:
https://doi.org/10.1007/978-981-16-9139-3
ISBN:
9789811691393
Privacy-preserving machine learning
Privacy-preserving machine learning
[electronic resource] /by Jin Li ... [et al.]. - Singapore :Springer Singapore :2022. - viii, 88 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs on cyber security systems and networks,2522-557X. - SpringerBriefs on cyber security systems and networks..
Introduction -- Secure Cooperative Learning in Early Years -- Outsourced Computation for Learning -- Secure Distributed Learning -- Learning with Differential Privacy -- Applications - Privacy-Preserving Image Processing -- Threats in Open Environment -- Conclusion.
This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
ISBN: 9789811691393
Standard No.: 10.1007/978-981-16-9139-3doiSubjects--Topical Terms:
3500846
Machine learning
--Security measures.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Privacy-preserving machine learning
LDR
:02145nmm a2200337 a 4500
001
2298311
003
DE-He213
005
20220314024648.0
006
m d
007
cr nn 008maaau
008
230324s2022 si s 0 eng d
020
$a
9789811691393
$q
(electronic bk.)
020
$a
9789811691386
$q
(paper)
024
7
$a
10.1007/978-981-16-9139-3
$2
doi
035
$a
978-981-16-9139-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
URD
$2
bicssc
072
7
$a
COM060040
$2
bisacsh
072
7
$a
URD
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.P961 2022
245
0 0
$a
Privacy-preserving machine learning
$h
[electronic resource] /
$c
by Jin Li ... [et al.].
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
viii, 88 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs on cyber security systems and networks,
$x
2522-557X
505
0
$a
Introduction -- Secure Cooperative Learning in Early Years -- Outsourced Computation for Learning -- Secure Distributed Learning -- Learning with Differential Privacy -- Applications - Privacy-Preserving Image Processing -- Threats in Open Environment -- Conclusion.
520
$a
This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
650
0
$a
Machine learning
$x
Security measures.
$3
3500846
650
1 4
$a
Privacy.
$3
528582
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Li, Jin.
$3
1297188
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs on cyber security systems and networks.
$3
3321241
856
4 0
$u
https://doi.org/10.1007/978-981-16-9139-3
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9440203
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入