語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Distributed machine learning and gra...
~
Jiang, Jiawei.
FindBook
Google Book
Amazon
博客來
Distributed machine learning and gradient optimization
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Distributed machine learning and gradient optimization/ by Jiawei Jiang, Bin Cui, Ce Zhang.
作者:
Jiang, Jiawei.
其他作者:
Cui, Bin.
出版者:
Singapore :Springer Singapore : : 2022.,
面頁冊數:
xi, 169 p. :ill., digital ;24 cm.
內容註:
1 Introduction -- 2 Basics of Distributed Machine Learning -- 3 Distributed Gradient Optimization Algorithms -- 4 Distributed Machine Learning Systems -- 5 Conclusion.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-981-16-3420-8
ISBN:
9789811634208
Distributed machine learning and gradient optimization
Jiang, Jiawei.
Distributed machine learning and gradient optimization
[electronic resource] /by Jiawei Jiang, Bin Cui, Ce Zhang. - Singapore :Springer Singapore :2022. - xi, 169 p. :ill., digital ;24 cm. - Big data management,2522-0187. - Big data management..
1 Introduction -- 2 Basics of Distributed Machine Learning -- 3 Distributed Gradient Optimization Algorithms -- 4 Distributed Machine Learning Systems -- 5 Conclusion.
This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.
ISBN: 9789811634208
Standard No.: 10.1007/978-981-16-3420-8doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .J53 2022
Dewey Class. No.: 006.31
Distributed machine learning and gradient optimization
LDR
:02309nmm a2200337 a 4500
001
2298279
003
DE-He213
005
20220223072714.0
006
m d
007
cr nn 008maaau
008
230324s2022 si s 0 eng d
020
$a
9789811634208
$q
(electronic bk.)
020
$a
9789811634192
$q
(paper)
024
7
$a
10.1007/978-981-16-3420-8
$2
doi
035
$a
978-981-16-3420-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.J53 2022
072
7
$a
UYQM
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQM
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.J61 2022
100
1
$a
Jiang, Jiawei.
$3
3594592
245
1 0
$a
Distributed machine learning and gradient optimization
$h
[electronic resource] /
$c
by Jiawei Jiang, Bin Cui, Ce Zhang.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
xi, 169 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Big data management,
$x
2522-0187
505
0
$a
1 Introduction -- 2 Basics of Distributed Machine Learning -- 3 Distributed Gradient Optimization Algorithms -- 4 Distributed Machine Learning Systems -- 5 Conclusion.
520
$a
This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol. Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal to a broad audience in the field of machine learning, artificial intelligence, big data and database management.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Database Management.
$3
891010
700
1
$a
Cui, Bin.
$3
2194857
700
1
$a
Zhang, Ce.
$3
3529875
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Big data management.
$3
3500827
856
4 0
$u
https://doi.org/10.1007/978-981-16-3420-8
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9440171
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .J53 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入