語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine and deep learning in oncolog...
~
El Naqa, Issam.
FindBook
Google Book
Amazon
博客來
Machine and deep learning in oncology, medical physics and radiology
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine and deep learning in oncology, medical physics and radiology/ edited by Issam El Naqa, Martin J. Murphy.
其他作者:
El Naqa, Issam.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
xvi, 513 p. :ill. (some col.), digital ;24 cm.
內容註:
Part I. Introduction -- 1. What are Machine and Deep Learning? -- 2. Computational Learning Basics -- 3. Overview of Conventional Machine Learning Methods -- 4. Overview of Deep Machine Learning Methods -- 5. Quantum Computing for Machine Learning -- 6. Performance Evaluation -- 7. Software Tools for Machine and Deep learning -- 8. Data sharing, protection and bioethics -- Part II. Machine Learning for Medical Image Analysis -- 9. Detection of Cancer Lesions from Imaging -- 10. Diagnosis of Malignant and Benign Tumours -- 11. Auto-contouring for image-guidance and treatment planning -- Part III. Machine Learning for Treatment planning & Delivery -- 12. Quality Assurance and error prediction -- 13. Knowledge-based treatment planning -- 14. Intelligent respiratory motion management -- Part IV. Machine Learning for Outcomes Modeling and Decision Support -- 15. Prediction of oncology treatment outcomes -- 16. Radiomics and radiogenomics -- 17. Modelling of Radiotherapy Response (TCP/NTCP) -- 18. Smart adaptive treatment strategies -- 19. Machine learning in clinical trials.
Contained By:
Springer Nature eBook
標題:
Radiology. -
電子資源:
https://doi.org/10.1007/978-3-030-83047-2
ISBN:
9783030830472
Machine and deep learning in oncology, medical physics and radiology
Machine and deep learning in oncology, medical physics and radiology
[electronic resource] /edited by Issam El Naqa, Martin J. Murphy. - Second edition. - Cham :Springer International Publishing :2022. - xvi, 513 p. :ill. (some col.), digital ;24 cm.
Part I. Introduction -- 1. What are Machine and Deep Learning? -- 2. Computational Learning Basics -- 3. Overview of Conventional Machine Learning Methods -- 4. Overview of Deep Machine Learning Methods -- 5. Quantum Computing for Machine Learning -- 6. Performance Evaluation -- 7. Software Tools for Machine and Deep learning -- 8. Data sharing, protection and bioethics -- Part II. Machine Learning for Medical Image Analysis -- 9. Detection of Cancer Lesions from Imaging -- 10. Diagnosis of Malignant and Benign Tumours -- 11. Auto-contouring for image-guidance and treatment planning -- Part III. Machine Learning for Treatment planning & Delivery -- 12. Quality Assurance and error prediction -- 13. Knowledge-based treatment planning -- 14. Intelligent respiratory motion management -- Part IV. Machine Learning for Outcomes Modeling and Decision Support -- 15. Prediction of oncology treatment outcomes -- 16. Radiomics and radiogenomics -- 17. Modelling of Radiotherapy Response (TCP/NTCP) -- 18. Smart adaptive treatment strategies -- 19. Machine learning in clinical trials.
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
ISBN: 9783030830472
Standard No.: 10.1007/978-3-030-83047-2doiSubjects--Topical Terms:
894545
Radiology.
LC Class. No.: RC78 / .M36 2022
Dewey Class. No.: 616.0757
Machine and deep learning in oncology, medical physics and radiology
LDR
:03223nmm a2200361 a 4500
001
2297683
003
DE-He213
005
20220202121220.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030830472
$q
(electronic bk.)
020
$a
9783030830465
$q
(paper)
024
7
$a
10.1007/978-3-030-83047-2
$2
doi
035
$a
978-3-030-83047-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
RC78
$b
.M36 2022
072
7
$a
MMPH
$2
bicssc
072
7
$a
MJCL
$2
bicssc
072
7
$a
SCI058000
$2
bisacsh
072
7
$a
MKSH
$2
thema
072
7
$a
MJCL
$2
thema
082
0 4
$a
616.0757
$2
23
090
$a
RC78
$b
.M149 2022
245
0 0
$a
Machine and deep learning in oncology, medical physics and radiology
$h
[electronic resource] /
$c
edited by Issam El Naqa, Martin J. Murphy.
250
$a
Second edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
xvi, 513 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Part I. Introduction -- 1. What are Machine and Deep Learning? -- 2. Computational Learning Basics -- 3. Overview of Conventional Machine Learning Methods -- 4. Overview of Deep Machine Learning Methods -- 5. Quantum Computing for Machine Learning -- 6. Performance Evaluation -- 7. Software Tools for Machine and Deep learning -- 8. Data sharing, protection and bioethics -- Part II. Machine Learning for Medical Image Analysis -- 9. Detection of Cancer Lesions from Imaging -- 10. Diagnosis of Malignant and Benign Tumours -- 11. Auto-contouring for image-guidance and treatment planning -- Part III. Machine Learning for Treatment planning & Delivery -- 12. Quality Assurance and error prediction -- 13. Knowledge-based treatment planning -- 14. Intelligent respiratory motion management -- Part IV. Machine Learning for Outcomes Modeling and Decision Support -- 15. Prediction of oncology treatment outcomes -- 16. Radiomics and radiogenomics -- 17. Modelling of Radiotherapy Response (TCP/NTCP) -- 18. Smart adaptive treatment strategies -- 19. Machine learning in clinical trials.
520
$a
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
650
0
$a
Radiology.
$3
894545
650
0
$a
Oncology.
$3
751006
650
0
$a
Radiotherapy.
$3
862372
650
0
$a
Machine learning.
$3
533906
650
0
$a
Medical physics.
$3
543326
650
1 4
$a
Radiation Oncology.
$3
3593533
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Medical Physics.
$3
3593543
650
2 4
$a
Biophysics.
$3
518360
700
1
$a
El Naqa, Issam.
$3
3593542
700
1
$a
Murphy, Martin J.
$3
2018647
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-83047-2
950
$a
Medicine (SpringerNature-11650)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9439575
電子資源
11.線上閱覽_V
電子書
EB RC78 .M36 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入