語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stability of elastic multi-link stru...
~
Ammari, Kais.
FindBook
Google Book
Amazon
博客來
Stability of elastic multi-link structures
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Stability of elastic multi-link structures/ by Kais Ammari, Farhat Shel.
作者:
Ammari, Kais.
其他作者:
Shel, Farhat.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
viii, 141 p. :ill. (some col.), digital ;24 cm.
內容註:
1. Preliminaries -- 2. Exponential stability of a network of elastic and thermoelastic materials -- 3. Exponential stability of a network of beams -- 4. Stability of a tree-shaped network of strings and beams -- 5. Feedback stabilization of a simplified model of fluid-structure interaction on a tree -- 6. Stability of a graph of strings with local Kelvin-Voigt damping -- Bibliography.
Contained By:
Springer Nature eBook
標題:
Differential equations, Partial - Asymptotic theory. -
電子資源:
https://doi.org/10.1007/978-3-030-86351-7
ISBN:
9783030863517
Stability of elastic multi-link structures
Ammari, Kais.
Stability of elastic multi-link structures
[electronic resource] /by Kais Ammari, Farhat Shel. - Cham :Springer International Publishing :2022. - viii, 141 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in mathematics,2191-8201. - SpringerBriefs in mathematics..
1. Preliminaries -- 2. Exponential stability of a network of elastic and thermoelastic materials -- 3. Exponential stability of a network of beams -- 4. Stability of a tree-shaped network of strings and beams -- 5. Feedback stabilization of a simplified model of fluid-structure interaction on a tree -- 6. Stability of a graph of strings with local Kelvin-Voigt damping -- Bibliography.
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
ISBN: 9783030863517
Standard No.: 10.1007/978-3-030-86351-7doiSubjects--Topical Terms:
542051
Differential equations, Partial
--Asymptotic theory.
LC Class. No.: QA377 / .A55 2022
Dewey Class. No.: 515.353
Stability of elastic multi-link structures
LDR
:02230nmm a2200337 a 4500
001
2297565
003
DE-He213
005
20220116190704.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030863517
$q
(electronic bk.)
020
$a
9783030863500
$q
(paper)
024
7
$a
10.1007/978-3-030-86351-7
$2
doi
035
$a
978-3-030-86351-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
$b
.A55 2022
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBKJ
$2
thema
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.A518 2022
100
1
$a
Ammari, Kais.
$3
2109652
245
1 0
$a
Stability of elastic multi-link structures
$h
[electronic resource] /
$c
by Kais Ammari, Farhat Shel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
viii, 141 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8201
505
0
$a
1. Preliminaries -- 2. Exponential stability of a network of elastic and thermoelastic materials -- 3. Exponential stability of a network of beams -- 4. Stability of a tree-shaped network of strings and beams -- 5. Feedback stabilization of a simplified model of fluid-structure interaction on a tree -- 6. Stability of a graph of strings with local Kelvin-Voigt damping -- Bibliography.
520
$a
This brief investigates the asymptotic behavior of some PDEs on networks. The structures considered consist of finitely interconnected flexible elements such as strings and beams (or combinations thereof), distributed along a planar network. Such study is motivated by the need for engineers to eliminate vibrations in some dynamical structures consisting of elastic bodies, coupled in the form of chain or graph such as pipelines and bridges. There are other complicated examples in the automotive industry, aircraft and space vehicles, containing rather than strings and beams, plates and shells. These multi-body structures are often complicated, and the mathematical models describing their evolution are quite complex. For the sake of simplicity, this volume considers only 1-d networks.
650
0
$a
Differential equations, Partial
$x
Asymptotic theory.
$3
542051
650
1 4
$a
Differential Equations.
$3
907890
650
2 4
$a
Dynamical Systems.
$3
3538746
650
2 4
$a
Group Theory and Generalizations.
$3
893889
650
2 4
$a
Graph Theory.
$3
1567033
700
1
$a
Shel, Farhat.
$3
3593349
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in mathematics.
$3
1566700
856
4 0
$u
https://doi.org/10.1007/978-3-030-86351-7
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9439457
電子資源
11.線上閱覽_V
電子書
EB QA377 .A55 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入