語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Logic-driven traffic big data analyt...
~
Zhong, Shaopeng.
FindBook
Google Book
Amazon
博客來
Logic-driven traffic big data analytics = methodology and applications for planning /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Logic-driven traffic big data analytics/ by Shaopeng Zhong, Daniel (Jian) Sun.
其他題名:
methodology and applications for planning /
作者:
Zhong, Shaopeng.
其他作者:
Sun, Daniel.
出版者:
Singapore :Springer Singapore : : 2022.,
面頁冊數:
xxii, 280 p. :ill. (chiefly col.), digital ;24 cm.
內容註:
Logic driven traffic big data analytics: An introduction -- Statistical models and methods -- Spatial-temporal distribution model for travel origin-destination based on multi-source data -- Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data -- A ride-sourcing group prediction model based on convolutional neural network.
Contained By:
Springer Nature eBook
標題:
Traffic surveys - Data processing. -
電子資源:
https://doi.org/10.1007/978-981-16-8016-8
ISBN:
9789811680168
Logic-driven traffic big data analytics = methodology and applications for planning /
Zhong, Shaopeng.
Logic-driven traffic big data analytics
methodology and applications for planning /[electronic resource] :by Shaopeng Zhong, Daniel (Jian) Sun. - Singapore :Springer Singapore :2022. - xxii, 280 p. :ill. (chiefly col.), digital ;24 cm.
Logic driven traffic big data analytics: An introduction -- Statistical models and methods -- Spatial-temporal distribution model for travel origin-destination based on multi-source data -- Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data -- A ride-sourcing group prediction model based on convolutional neural network.
This book starts from the relationship between urban built environment and travel behavior and focuses on analyzing the origin of traffic phenomena behind the data through multi-source traffic big data, which makes the book unique and different from the previous data-driven traffic big data analysis literature. This book focuses on understanding, estimating, predicting, and optimizing mobility patterns. Readers can find multi-source traffic big data processing methods, related statistical analysis models, and practical case applications from this book. This book bridges the gap between traffic big data, statistical analysis models, and mobility pattern analysis with a systematic investigation of traffic big data's impact on mobility patterns and urban planning.
ISBN: 9789811680168
Standard No.: 10.1007/978-981-16-8016-8doiSubjects--Topical Terms:
3591808
Traffic surveys
--Data processing.
LC Class. No.: HE336.A8 / Z56 2022
Dewey Class. No.: 388.314
Logic-driven traffic big data analytics = methodology and applications for planning /
LDR
:02230nmm a2200349 a 4500
001
2296835
003
DE-He213
005
20220201113426.0
006
m d
007
cr nn 008maaau
008
230324s2022 si s 0 eng d
020
$a
9789811680168
$q
(electronic bk.)
020
$a
9789811680151
$q
(paper)
024
7
$a
10.1007/978-981-16-8016-8
$2
doi
035
$a
978-981-16-8016-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HE336.A8
$b
Z56 2022
072
7
$a
KJT
$2
bicssc
072
7
$a
KJMD
$2
bicssc
072
7
$a
BUS049000
$2
bisacsh
072
7
$a
KJT
$2
thema
072
7
$a
KJMD
$2
thema
082
0 4
$a
388.314
$2
23
090
$a
HE336.A8
$b
Z63 2022
100
1
$a
Zhong, Shaopeng.
$3
3591806
245
1 0
$a
Logic-driven traffic big data analytics
$h
[electronic resource] :
$b
methodology and applications for planning /
$c
by Shaopeng Zhong, Daniel (Jian) Sun.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2022.
300
$a
xxii, 280 p. :
$b
ill. (chiefly col.), digital ;
$c
24 cm.
505
0
$a
Logic driven traffic big data analytics: An introduction -- Statistical models and methods -- Spatial-temporal distribution model for travel origin-destination based on multi-source data -- Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data -- A ride-sourcing group prediction model based on convolutional neural network.
520
$a
This book starts from the relationship between urban built environment and travel behavior and focuses on analyzing the origin of traffic phenomena behind the data through multi-source traffic big data, which makes the book unique and different from the previous data-driven traffic big data analysis literature. This book focuses on understanding, estimating, predicting, and optimizing mobility patterns. Readers can find multi-source traffic big data processing methods, related statistical analysis models, and practical case applications from this book. This book bridges the gap between traffic big data, statistical analysis models, and mobility pattern analysis with a systematic investigation of traffic big data's impact on mobility patterns and urban planning.
650
0
$a
Traffic surveys
$x
Data processing.
$3
3591808
650
0
$a
Traffic patterns
$x
Data processing.
$3
3591809
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Operations Research and Decision Theory.
$3
3591727
650
2 4
$a
Data Engineering.
$3
3409361
700
1
$a
Sun, Daniel.
$3
3591807
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-8016-8
950
$a
Business and Management (SpringerNature-41169)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9438727
電子資源
11.線上閱覽_V
電子書
EB HE336.A8 Z56 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入