語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning in industry
~
Datta, Shubhabrata.
FindBook
Google Book
Amazon
博客來
Machine learning in industry
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning in industry/ edited by Shubhabrata Datta, J. Paulo Davim.
其他作者:
Datta, Shubhabrata.
出版者:
Cham :Springer International Publishing : : 2022.,
面頁冊數:
x, 197 p. :ill., digital ;24 cm.
內容註:
Fundamentals of Machine learning -- Neural network model identification studies to predict residual stress of a steel plate based on a non-destructive Barkhausen noise measurement -- Data Driven Optimization of Blast Furnace Iron Making Process Using Evolutionary Deep Learning -- A brief appraisal of machine learning in industrial sensing probes -- Mining the genesis of sliver defects through Rough and Fuzzy Set Theories.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-75847-9
ISBN:
9783030758479
Machine learning in industry
Machine learning in industry
[electronic resource] /edited by Shubhabrata Datta, J. Paulo Davim. - Cham :Springer International Publishing :2022. - x, 197 p. :ill., digital ;24 cm. - Management and industrial engineering,2365-0532. - Management and industrial engineering..
Fundamentals of Machine learning -- Neural network model identification studies to predict residual stress of a steel plate based on a non-destructive Barkhausen noise measurement -- Data Driven Optimization of Blast Furnace Iron Making Process Using Evolutionary Deep Learning -- A brief appraisal of machine learning in industrial sensing probes -- Mining the genesis of sliver defects through Rough and Fuzzy Set Theories.
This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.
ISBN: 9783030758479
Standard No.: 10.1007/978-3-030-75847-9doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .M33 2022
Dewey Class. No.: 006.31
Machine learning in industry
LDR
:01972nmm a2200337 a 4500
001
2295816
003
DE-He213
005
20210724073223.0
006
m d
007
cr nn 008maaau
008
230324s2022 sz s 0 eng d
020
$a
9783030758479
$q
(electronic bk.)
020
$a
9783030758462
$q
(paper)
024
7
$a
10.1007/978-3-030-75847-9
$2
doi
035
$a
978-3-030-75847-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.M33 2022
072
7
$a
TGP
$2
bicssc
072
7
$a
TEC009060
$2
bisacsh
072
7
$a
TGP
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.M149 2022
245
0 0
$a
Machine learning in industry
$h
[electronic resource] /
$c
edited by Shubhabrata Datta, J. Paulo Davim.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2022.
300
$a
x, 197 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Management and industrial engineering,
$x
2365-0532
505
0
$a
Fundamentals of Machine learning -- Neural network model identification studies to predict residual stress of a steel plate based on a non-destructive Barkhausen noise measurement -- Data Driven Optimization of Blast Furnace Iron Making Process Using Evolutionary Deep Learning -- A brief appraisal of machine learning in industrial sensing probes -- Mining the genesis of sliver defects through Rough and Fuzzy Set Theories.
520
$a
This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.
650
0
$a
Machine learning.
$3
533906
650
0
$a
Artificial intelligence
$x
Industrial applications.
$3
653318
650
1 4
$a
Industrial and Production Engineering.
$3
891024
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Datta, Shubhabrata.
$3
3380810
700
1
$a
Davim, J. Paulo.
$3
907796
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Management and industrial engineering.
$3
2057681
856
4 0
$u
https://doi.org/10.1007/978-3-030-75847-9
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9437719
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .M33 2022
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入