語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Enabling Innovation in the Energy Sy...
~
Pratt, Bonnie.
FindBook
Google Book
Amazon
博客來
Enabling Innovation in the Energy System Transition.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Enabling Innovation in the Energy System Transition./
作者:
Pratt, Bonnie.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
186 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Contained By:
Dissertations Abstracts International82-03B.
標題:
Energy. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28031081
ISBN:
9798664759709
Enabling Innovation in the Energy System Transition.
Pratt, Bonnie.
Enabling Innovation in the Energy System Transition.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 186 p.
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Thesis (Ph.D.)--The University of Vermont and State Agricultural College, 2020.
This item must not be sold to any third party vendors.
Innovation in the electric sector has the potential to drive job growth, decrease environmental impacts, reduce rate payer costs, and increase reliability and resiliency. However, the traditional electric system was built to deliver a controlled flow of energy from a centralized location with maximum reliability and minimum cost. As both customer expectations and generation technologies change, new avenues for grid innovation are being explored. Residential customers, commercial and industrial clients, and electric utilities must all find a way to balance goals for decarbonization and social justice with maintaining a least cost, reliable power grid. Grounded in Geel's energy system transition framework, this dissertation explores how each of these three stakeholder groups is navigating the transition to renewables.The first study tests the idea that residential customers will be more inclined to change their behavior when altruistically contributing to a greater goal. Renewed Darwinian theory was explored to question the exclusive use of financial incentives in demand response programs, with evidence that enabling altruism may influence electricity demand even more effectively than traditional financial incentives. A difference in differences approach was designed to test the impact of the Burlington Electric Department's Defeat the Peak program on residential energy use where the incentive was a group donation to a local charity. Results suggest utility savings of over $12 in energy supply costs for every $1 they invested in the program.Financial levers, however, can be quite effective in influencing electricity demand, and may result in cost-shifting from high to low demand consumers. The second study focused on rate design for commercial and industrial customers through an analysis of the utility demand charge. For over a century the demand charge has been a primary means to recover total cost-of-service including fixed, embedded, and overhead costs. Under the current system, most small commercial and residential customers do not receive a strong direct price signal to invest in storage, load shifting, or renewables. Larger commercial and industrial customers exercise some measure of control over their loads to reduce demand charges, but with only modest benefit or value to the system as a whole. The system costs are then redistributed to all customer classes, potentially falling disproportionately on low demand customers. To investigate, a regression analysis was conducted with cost and market characteristics from 447 US electric utilities. Results suggest that demand charges predict a significant degree of variability in residential pricing, confirming suspected cost shifting. Redesigning the demand charge could open up new markets for renewable energy entrepreneurs and lower grid costs and customer rates, supporting goals of decarbonization while also achieving reliable least-cost power.In the third study, an iterative approach was employed to understand why some utilities lean into the energy system transition while others take a more conservative stance. A database of 170 US electric utilities was constructed including a qualitative assessment of Integrated Resource Plans for renewability orientation. Institutional resource-based theory was utilized to take a striated approach to understanding firm heterogeneity, identifying factors at the individual manager level, firm level, and external environment that can influence a utility's energy supply characteristics. Independent variables in a simultaneous regression analysis included CEO gender and tenure at the individual level, ownership structure and firm age at the firm level, and the impact of policies and state rurality at the inter-firm level. Results indicate that a significant amount of a utility's commitment to the renewable energy transition can be predicted based on these firm characteristics.
ISBN: 9798664759709Subjects--Topical Terms:
876794
Energy.
Subjects--Index Terms:
Innovation
Enabling Innovation in the Energy System Transition.
LDR
:05052nmm a2200361 4500
001
2284680
005
20211124102937.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798664759709
035
$a
(MiAaPQ)AAI28031081
035
$a
AAI28031081
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Pratt, Bonnie.
$3
3563866
245
1 0
$a
Enabling Innovation in the Energy System Transition.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
186 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
500
$a
Advisor: Erickson, Jon.
502
$a
Thesis (Ph.D.)--The University of Vermont and State Agricultural College, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Innovation in the electric sector has the potential to drive job growth, decrease environmental impacts, reduce rate payer costs, and increase reliability and resiliency. However, the traditional electric system was built to deliver a controlled flow of energy from a centralized location with maximum reliability and minimum cost. As both customer expectations and generation technologies change, new avenues for grid innovation are being explored. Residential customers, commercial and industrial clients, and electric utilities must all find a way to balance goals for decarbonization and social justice with maintaining a least cost, reliable power grid. Grounded in Geel's energy system transition framework, this dissertation explores how each of these three stakeholder groups is navigating the transition to renewables.The first study tests the idea that residential customers will be more inclined to change their behavior when altruistically contributing to a greater goal. Renewed Darwinian theory was explored to question the exclusive use of financial incentives in demand response programs, with evidence that enabling altruism may influence electricity demand even more effectively than traditional financial incentives. A difference in differences approach was designed to test the impact of the Burlington Electric Department's Defeat the Peak program on residential energy use where the incentive was a group donation to a local charity. Results suggest utility savings of over $12 in energy supply costs for every $1 they invested in the program.Financial levers, however, can be quite effective in influencing electricity demand, and may result in cost-shifting from high to low demand consumers. The second study focused on rate design for commercial and industrial customers through an analysis of the utility demand charge. For over a century the demand charge has been a primary means to recover total cost-of-service including fixed, embedded, and overhead costs. Under the current system, most small commercial and residential customers do not receive a strong direct price signal to invest in storage, load shifting, or renewables. Larger commercial and industrial customers exercise some measure of control over their loads to reduce demand charges, but with only modest benefit or value to the system as a whole. The system costs are then redistributed to all customer classes, potentially falling disproportionately on low demand customers. To investigate, a regression analysis was conducted with cost and market characteristics from 447 US electric utilities. Results suggest that demand charges predict a significant degree of variability in residential pricing, confirming suspected cost shifting. Redesigning the demand charge could open up new markets for renewable energy entrepreneurs and lower grid costs and customer rates, supporting goals of decarbonization while also achieving reliable least-cost power.In the third study, an iterative approach was employed to understand why some utilities lean into the energy system transition while others take a more conservative stance. A database of 170 US electric utilities was constructed including a qualitative assessment of Integrated Resource Plans for renewability orientation. Institutional resource-based theory was utilized to take a striated approach to understanding firm heterogeneity, identifying factors at the individual manager level, firm level, and external environment that can influence a utility's energy supply characteristics. Independent variables in a simultaneous regression analysis included CEO gender and tenure at the individual level, ownership structure and firm age at the firm level, and the impact of policies and state rurality at the inter-firm level. Results indicate that a significant amount of a utility's commitment to the renewable energy transition can be predicted based on these firm characteristics.
590
$a
School code: 0243.
650
4
$a
Energy.
$3
876794
650
4
$a
Systems science.
$3
3168411
653
$a
Innovation
653
$a
Rate Design
653
$a
Renewables
653
$a
Sociotechnical
690
$a
0791
690
$a
0790
690
$a
0429
710
2
$a
The University of Vermont and State Agricultural College.
$b
Natural Resources.
$3
2119480
773
0
$t
Dissertations Abstracts International
$g
82-03B.
790
$a
0243
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28031081
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9436413
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入