語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Design Considerations for Radio Freq...
~
Gu, Lei.
FindBook
Google Book
Amazon
博客來
Design Considerations for Radio Frequency Power Converters.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Design Considerations for Radio Frequency Power Converters./
作者:
Gu, Lei.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
140 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-06, Section: B.
Contained By:
Dissertations Abstracts International82-06B.
標題:
Electrical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28113279
ISBN:
9798698505853
Design Considerations for Radio Frequency Power Converters.
Gu, Lei.
Design Considerations for Radio Frequency Power Converters.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 140 p.
Source: Dissertations Abstracts International, Volume: 82-06, Section: B.
Thesis (Ph.D.)--Stanford University, 2019.
This item must not be sold to any third party vendors.
Compact and efficient high-frequency power converters and amplifiers are needed in a variety of applications, including base stations, mobile devices, and medical equipment. The ever-growing need for a smaller size, longer battery life, and lower cost introduces challenging design considerations for radio-frequency power converters. Today, these radio-frequency resonant converters use harmonic tuning to shape the voltage or current waveform of the switching device, with the primary goals of reducing device stress and increasing achievable efficiency. Although harmonic-tuned resonant converters can be very compact and efficient for a certain condition, significant challenges remain to widespread adoption, including limited high-efficiency range, complicated design procedures, and higher device stress compared with conventional approaches. This thesis presents circuit techniques that can extend the voltage, frequency, and efficiency ranges of radio-frequency power converters and provides more straightforward analysis and easy-to-implement design procedures.This thesis first presents a multi-resonant gate driver circuit developed using the harmonic wave-shaping technique that significantly reduces the high-frequency gate driving losses for Si and SiC MOSFETs. By controlling different harmonic components of an ideal square wave, we can resonantly shape a quasi-square voltage waveform at the gate. This gate driver is simple to control and has a low component count. Compared with a sine wave gate signal, this method reduces the transition time between the MOSFET is fully enhanced and turned-off, driving down the switching losses. Compared with similar multi-resonant drivers that are self-oscillating, this driver reduces the long start-up time required to reach steady-state. Intuitive design methodologies based on the frequency-domain plot are introduced. Using this technique, we are able to resonantly drive a Si MOSFET at 20 MHz and recycle 60% of the hard-switching gate-driving loss. We also demonstrate this driver on a SiC MOSFET switching at 30 MHz and save 80% of the hard-switching loss.Modern applications demand power converters to maintain a constant voltage output with high efficiency across significant load variation. This thesis presents a bidirectional dc-dc converter that enables efficient fixed-ratio voltage conversion at tens of megahertz. By selecting a proper matching network for the intermediate gain stage, we address multiple challenges simultaneously; a) replacing a lossy passive diode with a more efficient active transistor, b) maintaining efficient soft-switching operation, and c) a constant voltage conversion ratio over a wide load range. A 64 MHz, 12 W, 36 V-to-12 V prototype converter with 75% peak efficiency verifies the operation of the structure. An interleaved configuration is then proposed to improve the efficiency and transient performance of a single-phase structure. A 13.56 MHz, 210 V-to-30 V prototype converter with 90% peak efficiency at 200 W demonstrates the advantages of this proposed structure.RF power amplifiers underpin many systems that support our modern infrastructure. The Class EF and E/F family of harmonic-tuned switch-mode amplifiers have simple gate drives, reduced voltage stress, and higher output power capabilities than a conventional Class E circuit. To best utilize the performance potential of this family of circuits, this thesis presents a novel push-pull Phi2 (EF2) amplifier using interleaving and series-stacking techniques, denoted as a PPT Phi2 circuit. This series-stacked PPT Phi2 circuit combines all of the main advantages of different topologies, like the simplicity of gate driving, highest cut-off frequency, lowest voltage stress, and load-invariant operation. A compact 6.78 MHz, 100 V, 300 W prototype converter is demonstrated. Using lowcost Si devices, the prototype converter achieves 96% peak total efficiency and maintains above 94.5% drain efficiency across a wide range of voltage and power. This new series-stacked PPT F2 RF amplifier doubles the maximum operating frequency and voltage range of a Class EF or E/F amplifier with benefits in many modern applications that require high-frequency high-power RF signals, like wireless charging for electric vehicles, plasma RF drives, and nuclear magnetic resonance (NMR) spectroscopy.
ISBN: 9798698505853Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
Radio frequency power converters
Design Considerations for Radio Frequency Power Converters.
LDR
:05510nmm a2200337 4500
001
2282507
005
20211012150145.5
008
220723s2019 ||||||||||||||||| ||eng d
020
$a
9798698505853
035
$a
(MiAaPQ)AAI28113279
035
$a
(MiAaPQ)STANFORDxd153mn2607
035
$a
AAI28113279
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Gu, Lei.
$3
1910719
245
1 0
$a
Design Considerations for Radio Frequency Power Converters.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
140 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-06, Section: B.
500
$a
Advisor: Rivas-Davila, Juan;Lee, Thomas;Murmann, Boris; Perreault, David J.
502
$a
Thesis (Ph.D.)--Stanford University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Compact and efficient high-frequency power converters and amplifiers are needed in a variety of applications, including base stations, mobile devices, and medical equipment. The ever-growing need for a smaller size, longer battery life, and lower cost introduces challenging design considerations for radio-frequency power converters. Today, these radio-frequency resonant converters use harmonic tuning to shape the voltage or current waveform of the switching device, with the primary goals of reducing device stress and increasing achievable efficiency. Although harmonic-tuned resonant converters can be very compact and efficient for a certain condition, significant challenges remain to widespread adoption, including limited high-efficiency range, complicated design procedures, and higher device stress compared with conventional approaches. This thesis presents circuit techniques that can extend the voltage, frequency, and efficiency ranges of radio-frequency power converters and provides more straightforward analysis and easy-to-implement design procedures.This thesis first presents a multi-resonant gate driver circuit developed using the harmonic wave-shaping technique that significantly reduces the high-frequency gate driving losses for Si and SiC MOSFETs. By controlling different harmonic components of an ideal square wave, we can resonantly shape a quasi-square voltage waveform at the gate. This gate driver is simple to control and has a low component count. Compared with a sine wave gate signal, this method reduces the transition time between the MOSFET is fully enhanced and turned-off, driving down the switching losses. Compared with similar multi-resonant drivers that are self-oscillating, this driver reduces the long start-up time required to reach steady-state. Intuitive design methodologies based on the frequency-domain plot are introduced. Using this technique, we are able to resonantly drive a Si MOSFET at 20 MHz and recycle 60% of the hard-switching gate-driving loss. We also demonstrate this driver on a SiC MOSFET switching at 30 MHz and save 80% of the hard-switching loss.Modern applications demand power converters to maintain a constant voltage output with high efficiency across significant load variation. This thesis presents a bidirectional dc-dc converter that enables efficient fixed-ratio voltage conversion at tens of megahertz. By selecting a proper matching network for the intermediate gain stage, we address multiple challenges simultaneously; a) replacing a lossy passive diode with a more efficient active transistor, b) maintaining efficient soft-switching operation, and c) a constant voltage conversion ratio over a wide load range. A 64 MHz, 12 W, 36 V-to-12 V prototype converter with 75% peak efficiency verifies the operation of the structure. An interleaved configuration is then proposed to improve the efficiency and transient performance of a single-phase structure. A 13.56 MHz, 210 V-to-30 V prototype converter with 90% peak efficiency at 200 W demonstrates the advantages of this proposed structure.RF power amplifiers underpin many systems that support our modern infrastructure. The Class EF and E/F family of harmonic-tuned switch-mode amplifiers have simple gate drives, reduced voltage stress, and higher output power capabilities than a conventional Class E circuit. To best utilize the performance potential of this family of circuits, this thesis presents a novel push-pull Phi2 (EF2) amplifier using interleaving and series-stacking techniques, denoted as a PPT Phi2 circuit. This series-stacked PPT Phi2 circuit combines all of the main advantages of different topologies, like the simplicity of gate driving, highest cut-off frequency, lowest voltage stress, and load-invariant operation. A compact 6.78 MHz, 100 V, 300 W prototype converter is demonstrated. Using lowcost Si devices, the prototype converter achieves 96% peak total efficiency and maintains above 94.5% drain efficiency across a wide range of voltage and power. This new series-stacked PPT F2 RF amplifier doubles the maximum operating frequency and voltage range of a Class EF or E/F amplifier with benefits in many modern applications that require high-frequency high-power RF signals, like wireless charging for electric vehicles, plasma RF drives, and nuclear magnetic resonance (NMR) spectroscopy.
590
$a
School code: 0212.
650
4
$a
Electrical engineering.
$3
649834
653
$a
Radio frequency power converters
653
$a
Circuit techniques
653
$a
Design procedures
690
$a
0544
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
82-06B.
790
$a
0212
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28113279
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9434240
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入