語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Physics-Based Uncertainty Quantifica...
~
Hao, Zengrong.
FindBook
Google Book
Amazon
博客來
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport./
作者:
Hao, Zengrong.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
123 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Contained By:
Dissertations Abstracts International82-02B.
標題:
Applied physics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28104031
ISBN:
9798662511989
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport.
Hao, Zengrong.
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 123 p.
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Thesis (Ph.D.)--Stanford University, 2020.
This item must not be sold to any third party vendors.
Numerical simulations for turbulent flows and scalar (e.g. temperature, concentration and humidity) transport is one of the most challenging topics in urban wind engineering. For the design and optimization of configurations in cities, the Reynolds-averaged-Navier-Stokes (RANS) method for turbulence modeling has evident superiority over the turbulence-resolving methods (e.g. directly-numerical-simulation (DNS), large-eddy-simulation (LES), or RANS-LES hybrid approaches) in terms of efficiency and robustness. However, because "all models are wrong" (Box (1976)), the predictions of a RANS simulation always have uncertainties that originate in the inherent inadequacies of various physical hypotheses in the RANS models. To quantify these model uncertainties is not only significant for improving the practicability of RANS method in wind engineering, but also potentially help us understand the physics of turbulence in a broader sense. The objective of this thesis is to develop physics-based, data-free methods for RANS model uncertainty quantification (UQ) in engineering turbulent flows and scalar transport. These UQ methods are expected to estimate the appropriate bounds of quantities of interest (QoIs) at the cost of O(10) or fewer individual steady RANS simulations without any a priori data. The development of each method generally follows two principles: i) relaxing a well-established baseline model to address some inherent inadequacies in its physical assumptions; and ii) perturbing the released degrees-of-freedom (DOFs) based on some conceptual "limiting conditions" in physics. The studies of UQ methodologies in this thesis are divided into four separate parts as follows, of which Parts I and II are on the models for Reynolds stress, and Parts III and IV on the models for scalar flux. Part I addresses the uncertainty in the linear-eddy-viscosity (LEV) assumption that results in incorrect shape and orientation of Reynolds stress. This part directly applies the method previously proposed by Emory et al. (2013) and Gorle et al. (2012), named Reynolds-stress-shape-perturbation (RSSP), to examine its bounding behaviors for QoIs in complex problems. The investigation reveals that the RSSP method's incapability in bounding the turbulence-related QoIs in separation and backflow regions essentially does not originates in the LEV assumption but in the dissipation determination. Part II proposes the double-scale double-LEV (DSDL) model to address the uncertainty in the energy dissipation determination, which specifically overpredicts the dissipation rates in the turbulence with vortex shedding behind bluff bodies. The model uncertainty is represented by one or two uncertain parameters that roughly indicate the intensity of the interaction between coherent structures and stochastic turbulence. The applications of the DSDL model in several problems show promising performance in terms of bounding the turbulent energies behind bluff bodies and meanwhile maintaining appropriate mean-flow predictions. Part III proposes the one-equation (OE) method to quantify the uncertainty in scalar flux models. The method is designed from the perspective of ordinary vector field, aiming at optimizing the local productions of scalar flux magnitudes. It shows some favorable bounding behaviors for scalar-related QoIs, although the ignorance of uncertainty in the modeled pressure-scrambling effect limits its performance to some extent. Alternative to OE, Part IV proposes the pressure-scrambling-perturbation (PSP) method for scalar flux model UQ by addressing the uncertainty in the pressure-scrambling effect in scalar flux dynamics. It is based on two conceptual "limits" for the pressure-scrambling directions indicated by two classical phenomenological theories. The PSP method exhibits superior bounding behaviors over the OE method for the cases in this thesis. The works in this thesis are expected to contribute to the physical foundations of both the data-free and data-driven approaches for RANS model UQ.
ISBN: 9798662511989Subjects--Topical Terms:
3343996
Applied physics.
Subjects--Index Terms:
Wind power engineering
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport.
LDR
:05225nmm a2200349 4500
001
2281871
005
20210927083417.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798662511989
035
$a
(MiAaPQ)AAI28104031
035
$a
(MiAaPQ)STANFORDft402dg3014
035
$a
AAI28104031
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Hao, Zengrong.
$3
3560581
245
1 0
$a
Physics-Based Uncertainty Quantification of Reynolds-Averaged-Navier-Stokes Models for Turbulent Flows and Scalar Transport.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
123 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
500
$a
Advisor: Gorle, Catherine;Eaton, John;Iaccarino, Gianluca.
502
$a
Thesis (Ph.D.)--Stanford University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Numerical simulations for turbulent flows and scalar (e.g. temperature, concentration and humidity) transport is one of the most challenging topics in urban wind engineering. For the design and optimization of configurations in cities, the Reynolds-averaged-Navier-Stokes (RANS) method for turbulence modeling has evident superiority over the turbulence-resolving methods (e.g. directly-numerical-simulation (DNS), large-eddy-simulation (LES), or RANS-LES hybrid approaches) in terms of efficiency and robustness. However, because "all models are wrong" (Box (1976)), the predictions of a RANS simulation always have uncertainties that originate in the inherent inadequacies of various physical hypotheses in the RANS models. To quantify these model uncertainties is not only significant for improving the practicability of RANS method in wind engineering, but also potentially help us understand the physics of turbulence in a broader sense. The objective of this thesis is to develop physics-based, data-free methods for RANS model uncertainty quantification (UQ) in engineering turbulent flows and scalar transport. These UQ methods are expected to estimate the appropriate bounds of quantities of interest (QoIs) at the cost of O(10) or fewer individual steady RANS simulations without any a priori data. The development of each method generally follows two principles: i) relaxing a well-established baseline model to address some inherent inadequacies in its physical assumptions; and ii) perturbing the released degrees-of-freedom (DOFs) based on some conceptual "limiting conditions" in physics. The studies of UQ methodologies in this thesis are divided into four separate parts as follows, of which Parts I and II are on the models for Reynolds stress, and Parts III and IV on the models for scalar flux. Part I addresses the uncertainty in the linear-eddy-viscosity (LEV) assumption that results in incorrect shape and orientation of Reynolds stress. This part directly applies the method previously proposed by Emory et al. (2013) and Gorle et al. (2012), named Reynolds-stress-shape-perturbation (RSSP), to examine its bounding behaviors for QoIs in complex problems. The investigation reveals that the RSSP method's incapability in bounding the turbulence-related QoIs in separation and backflow regions essentially does not originates in the LEV assumption but in the dissipation determination. Part II proposes the double-scale double-LEV (DSDL) model to address the uncertainty in the energy dissipation determination, which specifically overpredicts the dissipation rates in the turbulence with vortex shedding behind bluff bodies. The model uncertainty is represented by one or two uncertain parameters that roughly indicate the intensity of the interaction between coherent structures and stochastic turbulence. The applications of the DSDL model in several problems show promising performance in terms of bounding the turbulent energies behind bluff bodies and meanwhile maintaining appropriate mean-flow predictions. Part III proposes the one-equation (OE) method to quantify the uncertainty in scalar flux models. The method is designed from the perspective of ordinary vector field, aiming at optimizing the local productions of scalar flux magnitudes. It shows some favorable bounding behaviors for scalar-related QoIs, although the ignorance of uncertainty in the modeled pressure-scrambling effect limits its performance to some extent. Alternative to OE, Part IV proposes the pressure-scrambling-perturbation (PSP) method for scalar flux model UQ by addressing the uncertainty in the pressure-scrambling effect in scalar flux dynamics. It is based on two conceptual "limits" for the pressure-scrambling directions indicated by two classical phenomenological theories. The PSP method exhibits superior bounding behaviors over the OE method for the cases in this thesis. The works in this thesis are expected to contribute to the physical foundations of both the data-free and data-driven approaches for RANS model UQ.
590
$a
School code: 0212.
650
4
$a
Applied physics.
$3
3343996
650
4
$a
Alternative energy.
$3
3436775
650
4
$a
Fluid mechanics.
$3
528155
650
4
$a
Environmental engineering.
$3
548583
653
$a
Wind power engineering
690
$a
0775
690
$a
0215
690
$a
0204
690
$a
0363
710
2
$a
Stanford University.
$3
754827
773
0
$t
Dissertations Abstracts International
$g
82-02B.
790
$a
0212
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28104031
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9433604
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入