語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Investigation of Strain Relaxation M...
~
Gangopadhyay, Abhinandan.
FindBook
Google Book
Amazon
博客來
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures./
作者:
Gangopadhyay, Abhinandan.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2021,
面頁冊數:
137 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-11, Section: B.
Contained By:
Dissertations Abstracts International82-11B.
標題:
Nanoscience. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28264274
ISBN:
9798728267744
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures.
Gangopadhyay, Abhinandan.
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures.
- Ann Arbor : ProQuest Dissertations & Theses, 2021 - 137 p.
Source: Dissertations Abstracts International, Volume: 82-11, Section: B.
Thesis (Ph.D.)--Arizona State University, 2021.
This item must not be sold to any third party vendors.
The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based and high-mismatched GaSb/GaAs(001) heterostructures.Three distinct stages of strain relaxation were identified in GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures with GaAsSb film thicknesses in the range of 50 to 4000 nm capped with 50-nm-thick GaAs layers. Diffraction contrast analysis with conventional TEM revealed that although 60° dislocations were primarily formed during the initial sluggish Stage-I relaxation, 90° dislocations were also created. Many curved dislocations, the majority of which extended into the substrate, were formed during Stage-II and Stage-III relaxation. The capping layers of heterostructures with larger film thickness (500 nm onwards) exhibited only Stage-I relaxation. A decrease in dislocation density was observed at the cap/film interface of the heterostructure with 4000-nm-thick film compared to that with 2000-nm-thick film, which correlated with smoothening of surface cross-hatch morphology. Detailed consideration of plausible dislocation sources for the capping layer led to the conclusion that dislocation half-loops nucleated at surface troughs were the main source of threading dislocations in these heterostructures.Aberration-corrected STEM imaging revealed that interfacial 60° dislocations in GaAs/GaAsSb/GaAs(001) and GaAs/GaAsP/GaAs(001) heterostructures were dissociated to form intrinsic stacking faults bounded by 90° and 30° Shockley partial dislocations. The cores of the 30° partials contained single atomic columns indicating that these dislocations primarily belonged to glide set. Apart from isolated dissociated 60° dislocations, Lomer-Cottrell locks, Lomer dislocations and a novel type of dissociated 90° dislocation were observed in GaAs/GaAsSb/GaAs heterostructures.The core structure of interfacial defects in GaSb/GaAs(001) heterostructure was also investigated using aberration-corrected STEM. 90° Lomer dislocations were primarily formed; however, glide-set perfect 60° and dissociated 60° dislocations were also observed. The 5-7 atomic-ring shuffle-set dislocation, the left-displaced 6-8 atomic-ring glide-set and the right-displaced 6-8 atomic-ring glide-set dislocations were three types of Lomer dislocations that were identified, among which the shuffle-set type was most common.
ISBN: 9798728267744Subjects--Topical Terms:
587832
Nanoscience.
Subjects--Index Terms:
Semiconductor heterostructures
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures.
LDR
:03871nmm a2200337 4500
001
2281549
005
20210920103540.5
008
220723s2021 ||||||||||||||||| ||eng d
020
$a
9798728267744
035
$a
(MiAaPQ)AAI28264274
035
$a
AAI28264274
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Gangopadhyay, Abhinandan.
$3
3560213
245
1 0
$a
Investigation of Strain Relaxation Mechanisms and Interfacial Defects in Lattice-mismatched GaAs(001)-based Heterostructures.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2021
300
$a
137 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-11, Section: B.
500
$a
Advisor: Smith, David J.
502
$a
Thesis (Ph.D.)--Arizona State University, 2021.
506
$a
This item must not be sold to any third party vendors.
520
$a
The evolution of defects at different stages of strain relaxation in low-mismatched GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures, and the underlying relaxation mechanisms, have been comprehensively studied primarily using transmission electron microscopy (TEM). Aberration-corrected scanning transmission electron microscopy (STEM) has been used for atomic-scale study of interfacial defects in low-mismatched GaAs(001)-based and high-mismatched GaSb/GaAs(001) heterostructures.Three distinct stages of strain relaxation were identified in GaAs/GaAs1-xSbx/GaAs(001) (x ~ 0.08) heterostructures with GaAsSb film thicknesses in the range of 50 to 4000 nm capped with 50-nm-thick GaAs layers. Diffraction contrast analysis with conventional TEM revealed that although 60° dislocations were primarily formed during the initial sluggish Stage-I relaxation, 90° dislocations were also created. Many curved dislocations, the majority of which extended into the substrate, were formed during Stage-II and Stage-III relaxation. The capping layers of heterostructures with larger film thickness (500 nm onwards) exhibited only Stage-I relaxation. A decrease in dislocation density was observed at the cap/film interface of the heterostructure with 4000-nm-thick film compared to that with 2000-nm-thick film, which correlated with smoothening of surface cross-hatch morphology. Detailed consideration of plausible dislocation sources for the capping layer led to the conclusion that dislocation half-loops nucleated at surface troughs were the main source of threading dislocations in these heterostructures.Aberration-corrected STEM imaging revealed that interfacial 60° dislocations in GaAs/GaAsSb/GaAs(001) and GaAs/GaAsP/GaAs(001) heterostructures were dissociated to form intrinsic stacking faults bounded by 90° and 30° Shockley partial dislocations. The cores of the 30° partials contained single atomic columns indicating that these dislocations primarily belonged to glide set. Apart from isolated dissociated 60° dislocations, Lomer-Cottrell locks, Lomer dislocations and a novel type of dissociated 90° dislocation were observed in GaAs/GaAsSb/GaAs heterostructures.The core structure of interfacial defects in GaSb/GaAs(001) heterostructure was also investigated using aberration-corrected STEM. 90° Lomer dislocations were primarily formed; however, glide-set perfect 60° and dissociated 60° dislocations were also observed. The 5-7 atomic-ring shuffle-set dislocation, the left-displaced 6-8 atomic-ring glide-set and the right-displaced 6-8 atomic-ring glide-set dislocations were three types of Lomer dislocations that were identified, among which the shuffle-set type was most common.
590
$a
School code: 0010.
650
4
$a
Nanoscience.
$3
587832
650
4
$a
Materials science.
$3
543314
653
$a
Semiconductor heterostructures
653
$a
Transmission electron microscopy
653
$a
Interfacial defects
690
$a
0794
690
$a
0565
710
2
$a
Arizona State University.
$b
Materials Science and Engineering.
$3
1680702
773
0
$t
Dissertations Abstracts International
$g
82-11B.
790
$a
0010
791
$a
Ph.D.
792
$a
2021
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28264274
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9433282
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入