語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature-Based Parameter Estimation o...
~
Lunderman, Spencer.
FindBook
Google Book
Amazon
博客來
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation./
作者:
Lunderman, Spencer.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
87 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Contained By:
Dissertations Abstracts International82-02B.
標題:
Mathematics. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28022212
ISBN:
9798662474116
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation.
Lunderman, Spencer.
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 87 p.
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
Thesis (Ph.D.)--The University of Arizona, 2020.
This item must not be sold to any third party vendors.
We introduce numerical methods for Bayesian estimation applications. The first chapter demonstrates the use of feature-based parameter estimation methods in atmospheric science. The nonlinear cloud and rain equation represents emergent behavior of stratocumulus clouds through a simplified predator-prey model with rain acting as a predator of the clouds. We use a large eddy simulation as the ``ground truth'' and extract cycles of cloud growth and decay from the simulation. Our method treats the cycles as features and subsequently performs a Bayesian inversion to estimate the model parameters. In the second chapter, we discuss the uses of global Bayesian optimization in data assimilation. Global Bayesian optimization is a derivative-free optimization technique designed for optimizing computationally expensive functions. We show how it can be coupled to an ensemble Kalman filter to estimate model parameters, model states, and simultaneously tune localization and inflation parameters. To illustrate these ideas, we present numerical experiments with the classical Lorenz models.
ISBN: 9798662474116Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Feature-based parameter estimation methods
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation.
LDR
:02268nmm a2200349 4500
001
2280599
005
20210907071107.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798662474116
035
$a
(MiAaPQ)AAI28022212
035
$a
AAI28022212
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Lunderman, Spencer.
$3
3559137
245
1 0
$a
Feature-Based Parameter Estimation of the Nonlinear Cloud and Rain Equation and Global Bayesian Optimization in Data Assimilation.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
87 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-02, Section: B.
500
$a
Advisor: Morzfeld, Matthias.
502
$a
Thesis (Ph.D.)--The University of Arizona, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
We introduce numerical methods for Bayesian estimation applications. The first chapter demonstrates the use of feature-based parameter estimation methods in atmospheric science. The nonlinear cloud and rain equation represents emergent behavior of stratocumulus clouds through a simplified predator-prey model with rain acting as a predator of the clouds. We use a large eddy simulation as the ``ground truth'' and extract cycles of cloud growth and decay from the simulation. Our method treats the cycles as features and subsequently performs a Bayesian inversion to estimate the model parameters. In the second chapter, we discuss the uses of global Bayesian optimization in data assimilation. Global Bayesian optimization is a derivative-free optimization technique designed for optimizing computationally expensive functions. We show how it can be coupled to an ensemble Kalman filter to estimate model parameters, model states, and simultaneously tune localization and inflation parameters. To illustrate these ideas, we present numerical experiments with the classical Lorenz models.
590
$a
School code: 0009.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Applied mathematics.
$3
2122814
650
4
$a
Atmospheric sciences.
$3
3168354
653
$a
Feature-based parameter estimation methods
653
$a
Nonlinear cloud
653
$a
Rain equation
690
$a
0405
690
$a
0364
690
$a
0725
710
2
$a
The University of Arizona.
$b
Mathematics.
$3
1032088
773
0
$t
Dissertations Abstracts International
$g
82-02B.
790
$a
0009
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28022212
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9432332
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入