語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nanomaterials for Advanced Battery C...
~
Moazzen, Elahe .
FindBook
Google Book
Amazon
博客來
Nanomaterials for Advanced Battery Cathodes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nanomaterials for Advanced Battery Cathodes./
作者:
Moazzen, Elahe .
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
153 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
Contained By:
Dissertations Abstracts International82-01B.
標題:
Chemistry. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27738941
ISBN:
9798662396593
Nanomaterials for Advanced Battery Cathodes.
Moazzen, Elahe .
Nanomaterials for Advanced Battery Cathodes.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 153 p.
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
Thesis (Ph.D.)--Illinois Institute of Technology, 2020.
This item must not be sold to any third party vendors.
Cathode materials are key components that directly determine the power density of a battery. One of the most effective ways of developing high power density cathodes is bringing them into the nano-scale world, which results in many expected and unexpected properties. Some of the desired characteristics include faster charge/discharge kinetics, improved capacity retention and structural stability due to the higher surface to volume ratio and shorter ion diffusion paths. In this dissertation a number of uniquely designed nano-sized cathode materials and nanocomposites are developed and investigated for alkaline aqueous and lithium ion battery applications.Nickel hydroxide (Ni(OH)2), which is one of the most important cathode materials in alkaline batteries, suffers from low conductivity, which usually leads to inefficient discharge and incomplete utilization of the material. A series of Ni(OH)2/Co(OH)2 core/shell nanoplatelets were synthesized and systematically investigated as cathode materials. Structure-property correlations revealed that electrochemical behavior and reversibility of Co(OH)2 redox conversion depended non-linearly on the average shell thickness, with the best performance (99.6% of theoretical capacity of the composite material) achieved at shell thickness of 1.9 ± 0.3 nm. Two fundamental phenomena were suggested to be responsible for the superior performance: templated shell deposition and galvanic coupling of core and shell materials.Manganese (IV) oxide (MnO2), which is another practical cathode that has a great potential to be utilized for a variety of energy storage systems, still has some major challenges including reversible cycling in rechargeable batteries. One of the most crucial challenges is the fact that polymorphs of MnO2 have different electrochemical activities as aqueous and Li-ion battery cathodes. However, most synthetic samples contain a mixture of polymorphs, which makes the structure-property correlations more complicated. This dissertation reports on systematic studies correlating synthesis, thermal and mechanical processing, and composite formation with polymorph composition, electrochemical performance and ion intercalation mechanisms. Among all the results, several main conclusions were reached:1) Through control of the synthesis parameters and post-processing, desired phase compositions and nanoparticle morphologies, which optimize MnO2 performance in aqueous alkaline electrolyte, can be achieved. Nanoparticles with higher fraction of the akhtenskite polymorph showed higher reversible capacities in LiOH electrolyte (~210 mAh g−1), with stable performance for over 50 cycles. The effects of sub-nanoparticle organization of MnO2 polymorphs by thermal treatment without any morphology change on cycling performance, phase activation, and charge/discharge mechanisms in LiOH electrolyte as well as the detailed mechanism of the polymorph conversion during annealing were studied and for the first time, demonstrating that the electrochemical activity of MnO2 material strongly depends not only on the lattice structure of individual polymorphs but also on the sub-nanoparticle polymorph architecture and interphases.2) Several processing strategies, including thermal and mechanical processing, and composite fabrication were utilized to develop functional MnO2 cathodes for Li-ion batteries. Improvements in capacity and cycling performance were correlated to the presence of the pyrolusite phase of MnO2 and the crystallite size. Composite fabrication by graphene oxide wrapping also provided significant performance improvements through polymorph composition control and improved conductivity.
ISBN: 9798662396593Subjects--Topical Terms:
516420
Chemistry.
Subjects--Index Terms:
Battery materials development
Nanomaterials for Advanced Battery Cathodes.
LDR
:04906nmm a2200385 4500
001
2276815
005
20210510092417.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798662396593
035
$a
(MiAaPQ)AAI27738941
035
$a
AAI27738941
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Moazzen, Elahe .
$3
3555116
245
1 0
$a
Nanomaterials for Advanced Battery Cathodes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
153 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-01, Section: B.
500
$a
Advisor: Segre, Carlo.
502
$a
Thesis (Ph.D.)--Illinois Institute of Technology, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Cathode materials are key components that directly determine the power density of a battery. One of the most effective ways of developing high power density cathodes is bringing them into the nano-scale world, which results in many expected and unexpected properties. Some of the desired characteristics include faster charge/discharge kinetics, improved capacity retention and structural stability due to the higher surface to volume ratio and shorter ion diffusion paths. In this dissertation a number of uniquely designed nano-sized cathode materials and nanocomposites are developed and investigated for alkaline aqueous and lithium ion battery applications.Nickel hydroxide (Ni(OH)2), which is one of the most important cathode materials in alkaline batteries, suffers from low conductivity, which usually leads to inefficient discharge and incomplete utilization of the material. A series of Ni(OH)2/Co(OH)2 core/shell nanoplatelets were synthesized and systematically investigated as cathode materials. Structure-property correlations revealed that electrochemical behavior and reversibility of Co(OH)2 redox conversion depended non-linearly on the average shell thickness, with the best performance (99.6% of theoretical capacity of the composite material) achieved at shell thickness of 1.9 ± 0.3 nm. Two fundamental phenomena were suggested to be responsible for the superior performance: templated shell deposition and galvanic coupling of core and shell materials.Manganese (IV) oxide (MnO2), which is another practical cathode that has a great potential to be utilized for a variety of energy storage systems, still has some major challenges including reversible cycling in rechargeable batteries. One of the most crucial challenges is the fact that polymorphs of MnO2 have different electrochemical activities as aqueous and Li-ion battery cathodes. However, most synthetic samples contain a mixture of polymorphs, which makes the structure-property correlations more complicated. This dissertation reports on systematic studies correlating synthesis, thermal and mechanical processing, and composite formation with polymorph composition, electrochemical performance and ion intercalation mechanisms. Among all the results, several main conclusions were reached:1) Through control of the synthesis parameters and post-processing, desired phase compositions and nanoparticle morphologies, which optimize MnO2 performance in aqueous alkaline electrolyte, can be achieved. Nanoparticles with higher fraction of the akhtenskite polymorph showed higher reversible capacities in LiOH electrolyte (~210 mAh g−1), with stable performance for over 50 cycles. The effects of sub-nanoparticle organization of MnO2 polymorphs by thermal treatment without any morphology change on cycling performance, phase activation, and charge/discharge mechanisms in LiOH electrolyte as well as the detailed mechanism of the polymorph conversion during annealing were studied and for the first time, demonstrating that the electrochemical activity of MnO2 material strongly depends not only on the lattice structure of individual polymorphs but also on the sub-nanoparticle polymorph architecture and interphases.2) Several processing strategies, including thermal and mechanical processing, and composite fabrication were utilized to develop functional MnO2 cathodes for Li-ion batteries. Improvements in capacity and cycling performance were correlated to the presence of the pyrolusite phase of MnO2 and the crystallite size. Composite fabrication by graphene oxide wrapping also provided significant performance improvements through polymorph composition control and improved conductivity.
590
$a
School code: 0091.
650
4
$a
Chemistry.
$3
516420
650
4
$a
Nanoscience.
$3
587832
650
4
$a
Materials science.
$3
543314
653
$a
Battery materials development
653
$a
Cathode
653
$a
Materials Characterization
653
$a
Nanoparticles
653
$a
X-ray absorption spectroscopy
653
$a
X-ray diffraction and Rietveld refinement
690
$a
0485
690
$a
0794
690
$a
0565
710
2
$a
Illinois Institute of Technology.
$b
Chemistry.
$3
3555117
773
0
$t
Dissertations Abstracts International
$g
82-01B.
790
$a
0091
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27738941
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9428549
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入