語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Trophic Ecology of Coral Reef Sp...
~
Macartney, Keir J.
FindBook
Google Book
Amazon
博客來
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems./
作者:
Macartney, Keir J.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
209 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
Contained By:
Dissertations Abstracts International82-04B.
標題:
Ecology. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28093074
ISBN:
9798672190327
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems.
Macartney, Keir J.
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 209 p.
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
Thesis (Ph.D.)--University of New Hampshire, 2020.
This item must not be sold to any third party vendors.
Emergent sponges are crucial to the functional ecology of coral reef ecosystems, playing key roles in benthic-pelagic coupling, biogeochemical cycling of key nutrients, and provision of food and habitat to a variety of coral reef fauna. In mesophotic coral reef ecosystems (MCEs), sponges show a repeatable pattern of increasing abundance and diversity with increasing depth. Mesophotic coral reef ecosystems are typically found between 30-150 m and are characterized by depth-dependent gradients in photosynthetically active radiation (PAR), and trophic resources such as increases in particulate organic matter (POM) and decreases in dissolved organic matter (DOM). Increased concentrations of POM appear to support increases in open reef sponge abundance, growth rates and diversity in MCEs, however the role of bottom-up control compared to top-down control of sponge distributions is contested in the literature. Given the importance of sponges on MCEs, increasing our understanding of what regulates their distribution and abundances is crucial in understanding MCEs function as a whole. To address this knowledge gap, we conducted a series of studies to assess the role of bottom-up forcing on the trophic ecology of sponges. We hypothesized that sponges on MCEs would be more abundant and have higher growth rates relative to their shallow conspecifics due to increased POM consumption. First, we used both bulk stable isotope analysis (SIA) and compound-specific isotope analysis of amino acids (CSIA-AA) of δ13C and δ15N to disentangle the host and microbiome signal, in order to better understand dietary changes between shallow and mesophotic depths, the trophic position of sponges and the potential translocation of resynthesized amino acids by the sponges microbiomes (Chapter 1). We then conducted a reciprocal transplant experiment and natural growth experiment with Agelas tubulata between shallow (22 m) and mesophotic (61 m) depths in order to quantify growth rates, feeding on POM and DOM and nutrient cycling between depths (Chapter 2). As it our data appears to show that a sponge's growth is controlled by gradients in POM and DOM concentrations, we then conducted a "natural" experiment along a shallow to mesophotic depth gradient. We collected tissue samples of four sponges to assess their microbiome community structure and function, SIA and proximate biochemical composition (Chapter 3). While these open reef sponges show increases in abundance and growth rate in MCEs due to increased POM consumption, low light adapted sponges such as the sclerosponge, Ceratoporella nicholsoni, are also abundant in mesophotic habitats. We quantified percent cover between a shallow and mesophotic depths and took tissue samples for 16s rRNA metabarcoding and stable isotope analyses (Chapter 4). The collective findings in these studies show that bottom-up forcing is the principle factor influencing the distribution, abundances and growth rates of emergent sponges due to the increased concentrations of more bioavailable POM on MCEs. While there is species-specific translocation of resynthesized amino acids by sponges, the total contributions by heterotrophic microbes through DOM consumption to sponge energetic budgets is still unknown. Species-specific changes in microbial community composition and function were observed in these studies, indicating that gradients in PAR or trophic resources can influence the microbiome of sponges between depths. This has important implications for both sponge trophic strategy and biogeochemical cycling of carbon and nitrogen between shallow and mesophotic depths We also found that cryptic and low light sponges in MCE may not be influenced by the increases in POM and warrant further study given the abundances of these sponges on Caribbean MCEs.
ISBN: 9798672190327Subjects--Topical Terms:
516476
Ecology.
Subjects--Index Terms:
Mesophotic
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems.
LDR
:05014nmm a2200385 4500
001
2276365
005
20210503061417.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798672190327
035
$a
(MiAaPQ)AAI28093074
035
$a
AAI28093074
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Macartney, Keir J.
$3
3554648
245
1 4
$a
The Trophic Ecology of Coral Reef Sponges in Caribbean Mesophotic Ecosystems.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
209 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-04, Section: B.
500
$a
Advisor: Lesser, Michael P.
502
$a
Thesis (Ph.D.)--University of New Hampshire, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Emergent sponges are crucial to the functional ecology of coral reef ecosystems, playing key roles in benthic-pelagic coupling, biogeochemical cycling of key nutrients, and provision of food and habitat to a variety of coral reef fauna. In mesophotic coral reef ecosystems (MCEs), sponges show a repeatable pattern of increasing abundance and diversity with increasing depth. Mesophotic coral reef ecosystems are typically found between 30-150 m and are characterized by depth-dependent gradients in photosynthetically active radiation (PAR), and trophic resources such as increases in particulate organic matter (POM) and decreases in dissolved organic matter (DOM). Increased concentrations of POM appear to support increases in open reef sponge abundance, growth rates and diversity in MCEs, however the role of bottom-up control compared to top-down control of sponge distributions is contested in the literature. Given the importance of sponges on MCEs, increasing our understanding of what regulates their distribution and abundances is crucial in understanding MCEs function as a whole. To address this knowledge gap, we conducted a series of studies to assess the role of bottom-up forcing on the trophic ecology of sponges. We hypothesized that sponges on MCEs would be more abundant and have higher growth rates relative to their shallow conspecifics due to increased POM consumption. First, we used both bulk stable isotope analysis (SIA) and compound-specific isotope analysis of amino acids (CSIA-AA) of δ13C and δ15N to disentangle the host and microbiome signal, in order to better understand dietary changes between shallow and mesophotic depths, the trophic position of sponges and the potential translocation of resynthesized amino acids by the sponges microbiomes (Chapter 1). We then conducted a reciprocal transplant experiment and natural growth experiment with Agelas tubulata between shallow (22 m) and mesophotic (61 m) depths in order to quantify growth rates, feeding on POM and DOM and nutrient cycling between depths (Chapter 2). As it our data appears to show that a sponge's growth is controlled by gradients in POM and DOM concentrations, we then conducted a "natural" experiment along a shallow to mesophotic depth gradient. We collected tissue samples of four sponges to assess their microbiome community structure and function, SIA and proximate biochemical composition (Chapter 3). While these open reef sponges show increases in abundance and growth rate in MCEs due to increased POM consumption, low light adapted sponges such as the sclerosponge, Ceratoporella nicholsoni, are also abundant in mesophotic habitats. We quantified percent cover between a shallow and mesophotic depths and took tissue samples for 16s rRNA metabarcoding and stable isotope analyses (Chapter 4). The collective findings in these studies show that bottom-up forcing is the principle factor influencing the distribution, abundances and growth rates of emergent sponges due to the increased concentrations of more bioavailable POM on MCEs. While there is species-specific translocation of resynthesized amino acids by sponges, the total contributions by heterotrophic microbes through DOM consumption to sponge energetic budgets is still unknown. Species-specific changes in microbial community composition and function were observed in these studies, indicating that gradients in PAR or trophic resources can influence the microbiome of sponges between depths. This has important implications for both sponge trophic strategy and biogeochemical cycling of carbon and nitrogen between shallow and mesophotic depths We also found that cryptic and low light sponges in MCE may not be influenced by the increases in POM and warrant further study given the abundances of these sponges on Caribbean MCEs.
590
$a
School code: 0141.
650
4
$a
Ecology.
$3
516476
650
4
$a
Biology.
$3
522710
650
4
$a
Biological oceanography.
$3
2122748
653
$a
Mesophotic
653
$a
Microbiome
653
$a
Particulate organic matter
653
$a
Sponge
653
$a
Stable isotope ecology
653
$a
Trophic ecology
690
$a
0329
690
$a
0306
690
$a
0416
710
2
$a
University of New Hampshire.
$b
Molecular and Evolutionary Systems Biology.
$3
3554649
773
0
$t
Dissertations Abstracts International
$g
82-04B.
790
$a
0141
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=28093074
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9428099
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入