語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Communications with Spectrum Sharing...
~
Zhang, Liang.
FindBook
Google Book
Amazon
博客來
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations./
作者:
Zhang, Liang.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
110 p.
附註:
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Contained By:
Dissertations Abstracts International82-03B.
標題:
Electrical engineering. -
電子資源:
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27742132
ISBN:
9798664720389
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations.
Zhang, Liang.
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 110 p.
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
Thesis (Ph.D.)--New Jersey Institute of Technology, 2020.
This item must not be sold to any third party vendors.
The fifth generation wireless network is designed to accommodate enormous traffic demands for the next decade and to satisfy varying quality of service for different users. Drone-mounted base stations (DBSs) characterized by high mobility and low cost intrinsic attributes can be deployed to enhance the network capacity. In-band full-duplex (IBFD) is a promising technology for future wireless communications that can potentially enhance the spectrum efficiency and the throughput capacity. Therefore, the following issues have been identified and investigated in this dissertation in order to achieve high spectrum efficiency and high user quality of service.First, the problem of deploying DBSs is studied. Deploying more DBSs may increase the total throughput of the network but at the expense of the operation cost. The droNe-mounted bAse station PlacEment (NAPE) problem with consideration of IBFD communications and DBS backhaul is then formulated. The objective is to minimize the number of deployed DBSs while maximizing the total throughput of the network by incorporating IBFD-enabled communications for both access links and backhaul links via DBSs as relay nodes. A heuristic algorithm is proposed to solve the NAPE problem, and its performance is evaluated via extensive simulations.Second, the 3-D DBS placement problem is investigated as the communication efficiency is greatly affected by the positions of DBSs. Then, the DBS placement with IBFD communications (DSP-IBFD) problem for downlink communications is formulated, and two heuristic algorithms are proposed to solve the DSP-IBFD problem based on different DBS placement strategies. The performance of the proposed algorithms are demonstrated via extensive simulations.Third, the potential benefits of jointly optimizing the radio resource assignment and 3-D DBS placement are explored, upon which the Drone-mounted Base Station Placement with IBFD communications (DBSP-IBFD) problem is formulated. Since the DBSP-IBFD problem is NP-hard, it is then decomposed into two sub-problems: the joint bandwidth, power allocation and UE association problem and the DBS placement problem. A 1/2 (1-1/21) algorithm is proposed to solve the DBSP-IBFD problem based on the solutions to the two sub-problems, where l is the number of simulation runs. Simulation results demonstrate that the throughput of the proposed approximation algorithm is superior to benchmark algorithms.Fourth, the uplink communications is studied as the mobile users need to transmit and receive data to and from base stations. The Backhaul-aware Uplink communications in a full-duplex DBS-aided HetNet (BUD) problem is investigated with the objective to maximize the total throughput of the network while minimizing the number of deployed DBSs. Since the BUD problem is NP-hard, it is then decomposed into three sub-problems: the joint UE association, power and bandwidth assignment problem, the DBS placement problem and the problem of determining the number of DBSs to be deployed. The AA-BUD algorithm is proposed to solve the BUD problem with guaranteed performance based on the solutions to the three sub-problems, and its performance is demonstrated via extensive simulations.The future work comprises two parts. First, a DBS can be used to provide both communications and computing services to users. Thus, how to minimize the average latency of all users in a DBS-aided mobile edge computing network requires further investigation. Second, the short flying time of a drone limits the deployment and the performance of DBSs. Free space optics (FSO) can be utilized as the backhaul link and the energizer to provision both communication and energy to a DBS. How to optimize the charging efficiency while maximizing the total throughput of the network requires further investigation.
ISBN: 9798664720389Subjects--Topical Terms:
649834
Electrical engineering.
Subjects--Index Terms:
5G
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations.
LDR
:05032nmm a2200385 4500
001
2275982
005
20210416102003.5
008
220723s2020 ||||||||||||||||| ||eng d
020
$a
9798664720389
035
$a
(MiAaPQ)AAI27742132
035
$a
AAI27742132
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Liang.
$3
1613704
245
1 0
$a
Communications with Spectrum Sharing in 5G Networks Via Drone-Mounted Base Stations.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
110 p.
500
$a
Source: Dissertations Abstracts International, Volume: 82-03, Section: B.
500
$a
Advisor: Ansari, Nirwan.
502
$a
Thesis (Ph.D.)--New Jersey Institute of Technology, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
The fifth generation wireless network is designed to accommodate enormous traffic demands for the next decade and to satisfy varying quality of service for different users. Drone-mounted base stations (DBSs) characterized by high mobility and low cost intrinsic attributes can be deployed to enhance the network capacity. In-band full-duplex (IBFD) is a promising technology for future wireless communications that can potentially enhance the spectrum efficiency and the throughput capacity. Therefore, the following issues have been identified and investigated in this dissertation in order to achieve high spectrum efficiency and high user quality of service.First, the problem of deploying DBSs is studied. Deploying more DBSs may increase the total throughput of the network but at the expense of the operation cost. The droNe-mounted bAse station PlacEment (NAPE) problem with consideration of IBFD communications and DBS backhaul is then formulated. The objective is to minimize the number of deployed DBSs while maximizing the total throughput of the network by incorporating IBFD-enabled communications for both access links and backhaul links via DBSs as relay nodes. A heuristic algorithm is proposed to solve the NAPE problem, and its performance is evaluated via extensive simulations.Second, the 3-D DBS placement problem is investigated as the communication efficiency is greatly affected by the positions of DBSs. Then, the DBS placement with IBFD communications (DSP-IBFD) problem for downlink communications is formulated, and two heuristic algorithms are proposed to solve the DSP-IBFD problem based on different DBS placement strategies. The performance of the proposed algorithms are demonstrated via extensive simulations.Third, the potential benefits of jointly optimizing the radio resource assignment and 3-D DBS placement are explored, upon which the Drone-mounted Base Station Placement with IBFD communications (DBSP-IBFD) problem is formulated. Since the DBSP-IBFD problem is NP-hard, it is then decomposed into two sub-problems: the joint bandwidth, power allocation and UE association problem and the DBS placement problem. A 1/2 (1-1/21) algorithm is proposed to solve the DBSP-IBFD problem based on the solutions to the two sub-problems, where l is the number of simulation runs. Simulation results demonstrate that the throughput of the proposed approximation algorithm is superior to benchmark algorithms.Fourth, the uplink communications is studied as the mobile users need to transmit and receive data to and from base stations. The Backhaul-aware Uplink communications in a full-duplex DBS-aided HetNet (BUD) problem is investigated with the objective to maximize the total throughput of the network while minimizing the number of deployed DBSs. Since the BUD problem is NP-hard, it is then decomposed into three sub-problems: the joint UE association, power and bandwidth assignment problem, the DBS placement problem and the problem of determining the number of DBSs to be deployed. The AA-BUD algorithm is proposed to solve the BUD problem with guaranteed performance based on the solutions to the three sub-problems, and its performance is demonstrated via extensive simulations.The future work comprises two parts. First, a DBS can be used to provide both communications and computing services to users. Thus, how to minimize the average latency of all users in a DBS-aided mobile edge computing network requires further investigation. Second, the short flying time of a drone limits the deployment and the performance of DBSs. Free space optics (FSO) can be utilized as the backhaul link and the energizer to provision both communication and energy to a DBS. How to optimize the charging efficiency while maximizing the total throughput of the network requires further investigation.
590
$a
School code: 0152.
650
4
$a
Electrical engineering.
$3
649834
650
4
$a
Communication.
$3
524709
650
4
$a
Technical communication.
$3
3172863
653
$a
5G
653
$a
Drone-mounted base station
653
$a
Full-duplex
653
$a
Heterogeneous networks
653
$a
OFDMA
653
$a
Wireless backhauling
690
$a
0544
690
$a
0459
690
$a
0643
710
2
$a
New Jersey Institute of Technology.
$b
Helen and John C. Hartmann Department of Electrical and Computer Engineering.
$3
3544311
773
0
$t
Dissertations Abstracts International
$g
82-03B.
790
$a
0152
791
$a
Ph.D.
792
$a
2020
793
$a
English
856
4 0
$u
https://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27742132
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9427716
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入