語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
First Principles Studies of Photoela...
~
Liang, Xin .
FindBook
Google Book
Amazon
博客來
First Principles Studies of Photoelasticity and Two-dimensional Silica.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
First Principles Studies of Photoelasticity and Two-dimensional Silica./
作者:
Liang, Xin .
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
181 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-10, Section: B.
Contained By:
Dissertations Abstracts International81-10B.
標題:
Applied physics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27542399
ISBN:
9798607320324
First Principles Studies of Photoelasticity and Two-dimensional Silica.
Liang, Xin .
First Principles Studies of Photoelasticity and Two-dimensional Silica.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 181 p.
Source: Dissertations Abstracts International, Volume: 81-10, Section: B.
Thesis (Ph.D.)--Yale University, 2019.
This item must not be sold to any third party vendors.
The thesis presents theoretical studies of photoelasticity and Two-dimensional silica using first principles calculations. The first project in this thesis concerns the elasto-optic effect in solids. The elasto-optic effect, or photoelasticity, describes the linear change of dielectric constant with applied strain and is a universal material property for insulators and semiconductors. Though the elasto-optic responses can be directly computed using first principles (e.g., density functional perturbation theory), little insight into the governing microscopic physical principles is provided by these methods. In this work, we describe a microscopic first principles analysis of photoelasticity in real-space based on Maximally Localized Wannier Functions (MLWFs). We show that the strain-dependent change of dipole transitions between occupied and unoccupied Wannier functions is the main determinant of photoelasticity. By organizing the dipole transitions into spatially localized shells according to the distances, we find that the photoelasticity is a relatively long-ranged. We believe the long-ranged nature of photoelasticity makes it unlikely to find simple and localized models with very few parameters that can describe photoelasticity with sufficient accuracy. The second project in this thesis investigates the growth of 2D silica and silicate thin films on NixPd1−x(111) alloy substrates. In the past decade, the creation of 2D SiO2 has added a new member to the material class of two-dimensional (2D) Van der Waals (vdW) atomically thin sheet. 2D SiO2 is the thinnest form of silica known with the SiO2 stoichiometry. Apart from being a 2D material, 2D SiO2 is also of interest because of its structural similarities to zeolite catalysts. 2D bilayer SiO2 can serve as a model system that imitates the inte- rior surface of bulk zeolites while its 2D nature permits application of surface microscopy techniques that reach atomic scale resolution. We employ density functional theory (DFT) to study the 2D SiO2 on various metal substrates and demonstrate that epitaxial strainplays an important role in engineering the 2D SiO2 overlayer's struture. We also focus on the structural competition between crystalline hexagonal 2D SiO2 in commensurate and incommensurate relation to the substrate when epitaxial strain cannot be realized in exper- iments. The recent creation of NixPd1−x random alloy in experiments is intended to study the strain effect on the morphology of the 2D SiO2 overlayer through the alloy's tunable lattice constant. However, the application is hindered due to its ability to form silicate overlayer through chemical reaction with the deposited SiO2. We propose a thermody- namically stable Ni silicate structure as a theoretical model for the silicate thin film on the NixPd1−x(111) surface and use DFT to characterize its structural and electronic properties. The next thrust in this effort has been to understand the phase competition between 2D silica and silicate phases on NixPd1−x alloy substrate. First principles calculations suggest that by decreasing the oxygen pressure and increasing Si supply, the 2D SiO2 will become the favorable phase. Experiments show that a decreased oxygen and restricted annealing temperature and time enable the growth of 2D SiO2.
ISBN: 9798607320324Subjects--Topical Terms:
3343996
Applied physics.
Subjects--Index Terms:
Photoelasticity
First Principles Studies of Photoelasticity and Two-dimensional Silica.
LDR
:04373nmm a2200325 4500
001
2272873
005
20201105110247.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9798607320324
035
$a
(MiAaPQ)AAI27542399
035
$a
AAI27542399
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Liang, Xin .
$3
3550297
245
1 0
$a
First Principles Studies of Photoelasticity and Two-dimensional Silica.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
181 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-10, Section: B.
500
$a
Advisor: Ismail-Beigi, Sohrab.
502
$a
Thesis (Ph.D.)--Yale University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
The thesis presents theoretical studies of photoelasticity and Two-dimensional silica using first principles calculations. The first project in this thesis concerns the elasto-optic effect in solids. The elasto-optic effect, or photoelasticity, describes the linear change of dielectric constant with applied strain and is a universal material property for insulators and semiconductors. Though the elasto-optic responses can be directly computed using first principles (e.g., density functional perturbation theory), little insight into the governing microscopic physical principles is provided by these methods. In this work, we describe a microscopic first principles analysis of photoelasticity in real-space based on Maximally Localized Wannier Functions (MLWFs). We show that the strain-dependent change of dipole transitions between occupied and unoccupied Wannier functions is the main determinant of photoelasticity. By organizing the dipole transitions into spatially localized shells according to the distances, we find that the photoelasticity is a relatively long-ranged. We believe the long-ranged nature of photoelasticity makes it unlikely to find simple and localized models with very few parameters that can describe photoelasticity with sufficient accuracy. The second project in this thesis investigates the growth of 2D silica and silicate thin films on NixPd1−x(111) alloy substrates. In the past decade, the creation of 2D SiO2 has added a new member to the material class of two-dimensional (2D) Van der Waals (vdW) atomically thin sheet. 2D SiO2 is the thinnest form of silica known with the SiO2 stoichiometry. Apart from being a 2D material, 2D SiO2 is also of interest because of its structural similarities to zeolite catalysts. 2D bilayer SiO2 can serve as a model system that imitates the inte- rior surface of bulk zeolites while its 2D nature permits application of surface microscopy techniques that reach atomic scale resolution. We employ density functional theory (DFT) to study the 2D SiO2 on various metal substrates and demonstrate that epitaxial strainplays an important role in engineering the 2D SiO2 overlayer's struture. We also focus on the structural competition between crystalline hexagonal 2D SiO2 in commensurate and incommensurate relation to the substrate when epitaxial strain cannot be realized in exper- iments. The recent creation of NixPd1−x random alloy in experiments is intended to study the strain effect on the morphology of the 2D SiO2 overlayer through the alloy's tunable lattice constant. However, the application is hindered due to its ability to form silicate overlayer through chemical reaction with the deposited SiO2. We propose a thermody- namically stable Ni silicate structure as a theoretical model for the silicate thin film on the NixPd1−x(111) surface and use DFT to characterize its structural and electronic properties. The next thrust in this effort has been to understand the phase competition between 2D silica and silicate phases on NixPd1−x alloy substrate. First principles calculations suggest that by decreasing the oxygen pressure and increasing Si supply, the 2D SiO2 will become the favorable phase. Experiments show that a decreased oxygen and restricted annealing temperature and time enable the growth of 2D SiO2.
590
$a
School code: 0265.
650
4
$a
Applied physics.
$3
3343996
650
4
$a
Condensed matter physics.
$3
3173567
653
$a
Photoelasticity
653
$a
Maximally Localized Wannier Functions
690
$a
0215
690
$a
0611
710
2
$a
Yale University.
$b
Applied Physics.
$3
3550035
773
0
$t
Dissertations Abstracts International
$g
81-10B.
790
$a
0265
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27542399
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9425107
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入