語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Some Problems in Four-dimensional Co...
~
Zhang, Siyi.
FindBook
Google Book
Amazon
博客來
Some Problems in Four-dimensional Conformal Geometry.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Some Problems in Four-dimensional Conformal Geometry./
作者:
Zhang, Siyi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
77 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Contained By:
Dissertations Abstracts International81-02B.
標題:
Mathematics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13882031
ISBN:
9781085638456
Some Problems in Four-dimensional Conformal Geometry.
Zhang, Siyi.
Some Problems in Four-dimensional Conformal Geometry.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 77 p.
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Thesis (Ph.D.)--Princeton University, 2019.
This item must not be sold to any third party vendors.
In this thesis, we study some problems in four-dimensional conformal geometry. This thesis consists of two main parts: conformally invariant characterization of CP2 and conformally invariant gap theorems for Bach-flat metrics.In the first part, we extend the sphere theorem of [8] to give a conformally invariant characterization of (CP2, gFS). In particular, we introduce a conformal invariant β(M4,[g]) ≥ 0 defined on conformal four-manifolds satisfying a positivity condition; it follows from [8] that if 0 ≤ β(M4,[g]) 0 and 4 ≤ β(M4,[g]) 0 small enough, then M4 is diffeomorphic to CP2. The Ricci flow is used in a crucial way to pass from the bounds on β to pointwise curvature information. We also prove a lower bound for β(M) under some topological conditions.In the second part, we extend a conformal gap theorem for Bach-flat metrics with round sphere as model case established in [10] to prove conformally invariant gap theorems for Bach-flat 4-manifolds with (CP2, gFS) and (S2xS2,gp) as model cases. A Moser-type iteration argument plays an important role in the case of (CP2, gFS) and the convergence theory of Bach-flat metrics is of particular importance in the case of (S2xS2,gp).
ISBN: 9781085638456Subjects--Topical Terms:
515831
Mathematics.
Subjects--Index Terms:
Analysis of PDEs
Some Problems in Four-dimensional Conformal Geometry.
LDR
:02269nmm a2200337 4500
001
2272534
005
20201105110117.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085638456
035
$a
(MiAaPQ)AAI13882031
035
$a
AAI13882031
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Siyi.
$3
3549969
245
1 0
$a
Some Problems in Four-dimensional Conformal Geometry.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
77 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
500
$a
Advisor: Chang, Sun-Yung A.
502
$a
Thesis (Ph.D.)--Princeton University, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
In this thesis, we study some problems in four-dimensional conformal geometry. This thesis consists of two main parts: conformally invariant characterization of CP2 and conformally invariant gap theorems for Bach-flat metrics.In the first part, we extend the sphere theorem of [8] to give a conformally invariant characterization of (CP2, gFS). In particular, we introduce a conformal invariant β(M4,[g]) ≥ 0 defined on conformal four-manifolds satisfying a positivity condition; it follows from [8] that if 0 ≤ β(M4,[g]) 0 and 4 ≤ β(M4,[g]) 0 small enough, then M4 is diffeomorphic to CP2. The Ricci flow is used in a crucial way to pass from the bounds on β to pointwise curvature information. We also prove a lower bound for β(M) under some topological conditions.In the second part, we extend a conformal gap theorem for Bach-flat metrics with round sphere as model case established in [10] to prove conformally invariant gap theorems for Bach-flat 4-manifolds with (CP2, gFS) and (S2xS2,gp) as model cases. A Moser-type iteration argument plays an important role in the case of (CP2, gFS) and the convergence theory of Bach-flat metrics is of particular importance in the case of (S2xS2,gp).
590
$a
School code: 0181.
650
4
$a
Mathematics.
$3
515831
650
4
$a
Theoretical mathematics.
$3
3173530
653
$a
Analysis of PDEs
653
$a
Conformal geometry
653
$a
Differential geometry
690
$a
0405
690
$a
0642
710
2
$a
Princeton University.
$b
Mathematics.
$3
2049791
773
0
$t
Dissertations Abstracts International
$g
81-02B.
790
$a
0181
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13882031
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9424768
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入