Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Exposure, Metabolism, and in Vitro E...
~
Phillips, Allison Liberty.
Linked to FindBook
Google Book
Amazon
博客來
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers.
Record Type:
Electronic resources : Monograph/item
Title/Author:
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers./
Author:
Phillips, Allison Liberty.
Published:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
Description:
264 p.
Notes:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
Subject:
Toxicology. -
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13428277
ISBN:
9781392195291
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers.
Phillips, Allison Liberty.
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 264 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--Duke University, 2019.
This item is not available from ProQuest Dissertations & Theses.
Following the phase-out of polybrominated diphenyl ethers (PBDEs) in the early 2000s, organophosphate esters (OPEs) emerged as PBDE substitutes and have been applied to furniture foam, electronics, building materials, and some plastics to reduce their flammability. Although they have been used for quite some time in hydraulic fluids, isopropylated and tert-butylated triaryl phosphate esters (ITPs & TBPPs) have been more recently introduced as flame retardant (FR) replacements for the pentaBDE mixture in polyurethane foam (PUF). In addition to their use as FRs, ITPs and TBPPs are also used as plasticizers.ITPs and TBPPs comprise a family of aryl organophosphate esters with varying degrees of isopropylation and tert-butylation. Individual ITP and TBPP isomers have been widely detected in indoor house dust, and recent biomonitoring studies demonstrate that human exposure to these compounds is widespread. Due to concerns about their persistence, bioaccumulation, and potential toxicity (P, B, & T), the U.S. Environmental Protection Agency (EPA) listed ITPs as one of five high priority chemicals fast-tracked for expedited risk assessment under the 2016 Toxic Substances Control Act (TSCA) reform.As such, studying the exposure, metabolism, and in vitro effects of these compounds is especially timely. The hypothesis of this research dissertation is that ITP and TBPP isomers may exhibit some of the same P, B, & T properties that motivated the phase out of PBDEs. The main objectives of this research project were to generate meaningful data to fill gaps in our knowledge of ITP and TBPP isomers, and to contribute to the ongoing risk assessment of these compounds.In the first aim of this thesis research, the maternal transfer of Firemaster® 550 (FM 550), a commercial mixture containing ITP isomers and brominated FRs, was investigated in dosed Wistar rats. Gestational and lactational transfer were examined separately, with dams orally exposed to 300 or 1000 μg of FM 550 for 10 consecutive days during gestation (gestational day [GD] 9-18) or lactation (postnatal day [PND] 3-12). Levels of parent compounds were measured in dam and pup urine. The two brominated components of FM 500, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP), underwent both gestational and lactational transfer. Triphenyl phosphate (TPHP) and ITPs were rapidly metabolized by the dams and were not detected in whole tissue homogenates. However, diphenyl phosphate (DPHP) and mono-isopropylphenyl phenyl phosphate (ip-PPP) were detected in urine from the dosed animals. This study was the first to confirm ip-PPP as a urinary metabolite of ITPs and establish a pharmacokinetic profile of FM 550 in a mammalian model.In the second aim of this thesis research, the contribution of individual ITP and TBPP isomers was quantified in four commercial flame retardant mixtures: FM 550, Firemaster® 600 (FM 600), an ITP mixture, and a TBPP mixture. Findings suggested similarities between FM 550 and the ITP mixture, with 2-isopropylphenyl diphenyl phosphate (2IPPDPP), 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP), and bis(2-isopropylphenyl) phenyl phosphate (B2IPPPP) being the most prevalent ITP isomer in both mixtures. FM 600 differed from FM 550 in that it contained TBPP isomers rather than ITP isomers. ITP and TBPP isomers were also detected and quantified in house dust standard reference material, SRM 2585, demonstrating their environmental relevance.The third aim of this thesis research investigated phase I and II in vitro metabolism of TPHP, 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) at 1 and 10 μM doses using human liver subcellular fractions. Parent depletion and the formation of known metabolites, including DPHP, hydroxyl-triphenyl phosphate (OH-TPHP), ip-PPP, and tert-butylphenyl phenyl phosphate (tb-PPP), were monitored via gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS). Tb-PPP and its conjugates were identified as the major in vitro metabolites of 4tBPDPP, accounting for up to 33% of the initial parent dose. While the mass balance between parents and metabolites was conserved for TPHP and 4tBPDPP, approximately 20% of the initial parent mass was unaccounted for after quantifying metabolites of 2IPPDPP and 4IPPDPP that had authentic standards available. Two novel ITP metabolites, mono-isopropenylphenyl diphenyl phosphate and hydroxy-isopropylphenyl diphenyl phosphate, were tentatively identified by high-resolution mass spectrometry (HRMS) and screened for in recently collected human urine. This study provided insight into recent human biomonitoring and epidemiological studies and contributed to our understanding of the biological fate of ITP and TBPP isomers.Finally, the fourth aim of this thesis research evaluated ITPs, TBPPs, and related commercial mixtures for their effect on the activity of purified human liver carboxylesterase (hCE1). (Abstract shortened by ProQuest).
ISBN: 9781392195291Subjects--Topical Terms:
556884
Toxicology.
Subjects--Index Terms:
Flame retardant
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers.
LDR
:06572nmm a2200409 4500
001
2272368
005
20201105110036.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392195291
035
$a
(MiAaPQ)AAI13428277
035
$a
(MiAaPQ)duke:14960
035
$a
AAI13428277
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Phillips, Allison Liberty.
$3
3549801
245
1 0
$a
Exposure, Metabolism, and in Vitro Effects of Isopropylated and Tert-butylated Triarylphosphate Ester (ITP & TBPP) Flame Retardants and Plasticizers.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
264 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Stapleton, Heather.
502
$a
Thesis (Ph.D.)--Duke University, 2019.
506
$a
This item is not available from ProQuest Dissertations & Theses.
506
$a
This item must not be added to any third party search indexes.
506
$a
This item must not be sold to any third party vendors.
520
$a
Following the phase-out of polybrominated diphenyl ethers (PBDEs) in the early 2000s, organophosphate esters (OPEs) emerged as PBDE substitutes and have been applied to furniture foam, electronics, building materials, and some plastics to reduce their flammability. Although they have been used for quite some time in hydraulic fluids, isopropylated and tert-butylated triaryl phosphate esters (ITPs & TBPPs) have been more recently introduced as flame retardant (FR) replacements for the pentaBDE mixture in polyurethane foam (PUF). In addition to their use as FRs, ITPs and TBPPs are also used as plasticizers.ITPs and TBPPs comprise a family of aryl organophosphate esters with varying degrees of isopropylation and tert-butylation. Individual ITP and TBPP isomers have been widely detected in indoor house dust, and recent biomonitoring studies demonstrate that human exposure to these compounds is widespread. Due to concerns about their persistence, bioaccumulation, and potential toxicity (P, B, & T), the U.S. Environmental Protection Agency (EPA) listed ITPs as one of five high priority chemicals fast-tracked for expedited risk assessment under the 2016 Toxic Substances Control Act (TSCA) reform.As such, studying the exposure, metabolism, and in vitro effects of these compounds is especially timely. The hypothesis of this research dissertation is that ITP and TBPP isomers may exhibit some of the same P, B, & T properties that motivated the phase out of PBDEs. The main objectives of this research project were to generate meaningful data to fill gaps in our knowledge of ITP and TBPP isomers, and to contribute to the ongoing risk assessment of these compounds.In the first aim of this thesis research, the maternal transfer of Firemaster® 550 (FM 550), a commercial mixture containing ITP isomers and brominated FRs, was investigated in dosed Wistar rats. Gestational and lactational transfer were examined separately, with dams orally exposed to 300 or 1000 μg of FM 550 for 10 consecutive days during gestation (gestational day [GD] 9-18) or lactation (postnatal day [PND] 3-12). Levels of parent compounds were measured in dam and pup urine. The two brominated components of FM 500, 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP), underwent both gestational and lactational transfer. Triphenyl phosphate (TPHP) and ITPs were rapidly metabolized by the dams and were not detected in whole tissue homogenates. However, diphenyl phosphate (DPHP) and mono-isopropylphenyl phenyl phosphate (ip-PPP) were detected in urine from the dosed animals. This study was the first to confirm ip-PPP as a urinary metabolite of ITPs and establish a pharmacokinetic profile of FM 550 in a mammalian model.In the second aim of this thesis research, the contribution of individual ITP and TBPP isomers was quantified in four commercial flame retardant mixtures: FM 550, Firemaster® 600 (FM 600), an ITP mixture, and a TBPP mixture. Findings suggested similarities between FM 550 and the ITP mixture, with 2-isopropylphenyl diphenyl phosphate (2IPPDPP), 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP), and bis(2-isopropylphenyl) phenyl phosphate (B2IPPPP) being the most prevalent ITP isomer in both mixtures. FM 600 differed from FM 550 in that it contained TBPP isomers rather than ITP isomers. ITP and TBPP isomers were also detected and quantified in house dust standard reference material, SRM 2585, demonstrating their environmental relevance.The third aim of this thesis research investigated phase I and II in vitro metabolism of TPHP, 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) at 1 and 10 μM doses using human liver subcellular fractions. Parent depletion and the formation of known metabolites, including DPHP, hydroxyl-triphenyl phosphate (OH-TPHP), ip-PPP, and tert-butylphenyl phenyl phosphate (tb-PPP), were monitored via gas chromatography/mass spectrometry (GC/MS) and liquid chromatography tandem mass spectrometry (LC/MS/MS). Tb-PPP and its conjugates were identified as the major in vitro metabolites of 4tBPDPP, accounting for up to 33% of the initial parent dose. While the mass balance between parents and metabolites was conserved for TPHP and 4tBPDPP, approximately 20% of the initial parent mass was unaccounted for after quantifying metabolites of 2IPPDPP and 4IPPDPP that had authentic standards available. Two novel ITP metabolites, mono-isopropenylphenyl diphenyl phosphate and hydroxy-isopropylphenyl diphenyl phosphate, were tentatively identified by high-resolution mass spectrometry (HRMS) and screened for in recently collected human urine. This study provided insight into recent human biomonitoring and epidemiological studies and contributed to our understanding of the biological fate of ITP and TBPP isomers.Finally, the fourth aim of this thesis research evaluated ITPs, TBPPs, and related commercial mixtures for their effect on the activity of purified human liver carboxylesterase (hCE1). (Abstract shortened by ProQuest).
590
$a
School code: 0066.
650
4
$a
Toxicology.
$3
556884
650
4
$a
Environmental Health.
$3
578282
650
4
$a
Analytical chemistry.
$3
3168300
653
$a
Flame retardant
653
$a
Itp
653
$a
Organophosphate ester
653
$a
Tbpp
690
$a
0383
690
$a
0470
690
$a
0486
710
2
$a
Duke University.
$b
Environment.
$3
1018684
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0066
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13428277
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9424602
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login