語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Markov Chain Epidemic Models and Par...
~
Ige, Oluwatobiloba.
FindBook
Google Book
Amazon
博客來
Markov Chain Epidemic Models and Parameter Estimation.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Markov Chain Epidemic Models and Parameter Estimation./
作者:
Ige, Oluwatobiloba.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2020,
面頁冊數:
82 p.
附註:
Source: Masters Abstracts International, Volume: 81-11.
Contained By:
Masters Abstracts International81-11.
標題:
Statistics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27956122
ISBN:
9798643170952
Markov Chain Epidemic Models and Parameter Estimation.
Ige, Oluwatobiloba.
Markov Chain Epidemic Models and Parameter Estimation.
- Ann Arbor : ProQuest Dissertations & Theses, 2020 - 82 p.
Source: Masters Abstracts International, Volume: 81-11.
Thesis (M.A.)--Marshall University, 2020.
This item must not be sold to any third party vendors.
Over the years, various parts of the world have experienced disease outbreaks. Mathematical models are used to describe these outbreaks. We study the transmission of disease in simple cases of disease outbreaks by using compartmental models with Markov chains. First, we explore the formulation of compartmental SIS (Susceptible-Infectious-Susceptible) and SIR (Susceptible-Infectious-Recovered) disease models. These models are the basic building blocks of other compartmental disease models. Second, we build SIS and SIR disease models using both discrete and continuous time Markov chains. In discrete time models, transmission occurs at fixed time steps, and in continuous time models, transmission may occur at any time. Third, we simulate examples of SIS and SIR disease models in discrete time and in continuous time to see how the number of infected individuals changes over time. Fourth, we estimate the transmission and recovery rates from simulated data using the method of maximum likelihood. The parameter estimates in discrete time are obtained using computer algorithms and those in continuous time are obtained using both computer algorithms and theoretical formulas. Finally, we compute the bias and mean squared error of the estimators.
ISBN: 9798643170952Subjects--Topical Terms:
517247
Statistics.
Subjects--Index Terms:
Disease models
Markov Chain Epidemic Models and Parameter Estimation.
LDR
:02336nmm a2200373 4500
001
2270250
005
20200921070805.5
008
220629s2020 ||||||||||||||||| ||eng d
020
$a
9798643170952
035
$a
(MiAaPQ)AAI27956122
035
$a
AAI27956122
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Ige, Oluwatobiloba.
$3
3547622
245
1 0
$a
Markov Chain Epidemic Models and Parameter Estimation.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2020
300
$a
82 p.
500
$a
Source: Masters Abstracts International, Volume: 81-11.
500
$a
Advisor: Mummert, Anna.
502
$a
Thesis (M.A.)--Marshall University, 2020.
506
$a
This item must not be sold to any third party vendors.
520
$a
Over the years, various parts of the world have experienced disease outbreaks. Mathematical models are used to describe these outbreaks. We study the transmission of disease in simple cases of disease outbreaks by using compartmental models with Markov chains. First, we explore the formulation of compartmental SIS (Susceptible-Infectious-Susceptible) and SIR (Susceptible-Infectious-Recovered) disease models. These models are the basic building blocks of other compartmental disease models. Second, we build SIS and SIR disease models using both discrete and continuous time Markov chains. In discrete time models, transmission occurs at fixed time steps, and in continuous time models, transmission may occur at any time. Third, we simulate examples of SIS and SIR disease models in discrete time and in continuous time to see how the number of infected individuals changes over time. Fourth, we estimate the transmission and recovery rates from simulated data using the method of maximum likelihood. The parameter estimates in discrete time are obtained using computer algorithms and those in continuous time are obtained using both computer algorithms and theoretical formulas. Finally, we compute the bias and mean squared error of the estimators.
590
$a
School code: 0817.
650
4
$a
Statistics.
$3
517247
650
4
$a
Biostatistics.
$3
1002712
653
$a
Disease models
653
$a
Epidemic
653
$a
Markov chain
653
$a
Maximum likelihood
653
$a
SIR
653
$a
SIS
690
$a
0463
690
$a
0308
710
2
$a
Marshall University.
$b
Mathematics.
$3
3286951
773
0
$t
Masters Abstracts International
$g
81-11.
790
$a
0817
791
$a
M.A.
792
$a
2020
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=27956122
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9422484
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入