語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Understanding Resistant Organic Carb...
~
Bernardi Bif, Mariana.
FindBook
Google Book
Amazon
博客來
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes./
作者:
Bernardi Bif, Mariana.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
119 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Contained By:
Dissertations Abstracts International81-04B.
標題:
Biogeochemistry. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13904761
ISBN:
9781085690034
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes.
Bernardi Bif, Mariana.
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 119 p.
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Thesis (Ph.D.)--University of Miami, 2019.
This item must not be sold to any third party vendors.
The cycling of bioactive elements on Earth and their allocation into major reservoirs is driven through their biogeochemical transformations. Carbon, for example, is biologically transformed by primary producers that convert CO2 to organic carbon during photosynthesis, which is then respired back to the gaseous form by heterotrophs. The cycling of other elements such as nitrogen, phosphorus and iron, considered essential nutrients for living organisms, are directly linked to carbon through the formation of organic matter resulting from primary production. In the ocean, a portion of organic carbon resists immediate degradation in the euphotic layer and can be exported to the deep layers to be respired far away from surface waters, thus contributing to the development of an oceanic sink for atmospheric CO2. However, controls on the production of resistant fractions with potential for export are both unresolved and the subject of this dissertation. The first chapter contains a general introduction to organic carbon dynamics in the ocean, its state-of-the-art, and the itemized objectives of this dissertation. In the second chapter, I use incubations of natural microbial populations to demonstrate that the production of a resistant dissolved organic carbon (DOC) fraction is controlled by the initial availability of nutrients to the microbial community. In the third chapter, I apply this concept to the upper northeast Pacific Ocean, where seasonal measurements of organic and inorganic parameters were taken from multiple cruises carried out between 2017 and 2018. I show that organic carbon production and accumulation in the region is seasonally variable: in the wintertime, vertical mixing brings inorganic nutrients to the euphotic layer that fuel organic carbon production in spring and summer, with a variable fraction accumulating as DOC. For the same region, in the fourth chapter, I present a novel application of Bio-Argo float (i.e., BGC float) data to estimate net organic carbon production with high temporal resolution, with ability to differentiate total and dissolved organic carbon fractions. The method was applied to Bio-Argo data collected from 2009 to 2018, and improved temporal resolution of net organic carbon production estimations without the need of ship-based sampling. The highest and lowest production happened during the two consecutive summers of 2014 and 2015, respectively, and controls on the variability were investigated. Using Bio-Argo float and historical data from the region, I show that warm events driven by ocean-atmospheric oscillations, occurring between 2013 and 2016, restricted winter mixing during two consecutive years. The enhanced stratification decreased the nutrient stocks in the upper ocean, which greatly reduced further organic carbon production and, thus, its prospects for export to the deep ocean. The last section of this dissertation is an Appendix that contains preliminary results from an incubation experiment. The study aimed to evaluate the preferential consumption of particulate versus dissolved organic carbon (POC versus DOC, respectively) by surface ocean microbes. The incubation outcome indicates that chemical compounds from the POC fraction are remineralized faster than those comprising the DOC fraction. Although the result is preliminary, it provides insights on the preferential consumption of each organic carbon pool once they are freshly released to the environment.
ISBN: 9781085690034Subjects--Topical Terms:
545717
Biogeochemistry.
Subjects--Index Terms:
Dissolved organic carbon
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes.
LDR
:04700nmm a2200385 4500
001
2268857
005
20200824100411.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085690034
035
$a
(MiAaPQ)AAI13904761
035
$a
AAI13904761
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Bernardi Bif, Mariana.
$3
3546158
245
1 0
$a
Understanding Resistant Organic Carbon in the Ocean: From Microbes to Large-Scale Processes.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
119 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
500
$a
Advisor: Hansell, Dennis A.
502
$a
Thesis (Ph.D.)--University of Miami, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
The cycling of bioactive elements on Earth and their allocation into major reservoirs is driven through their biogeochemical transformations. Carbon, for example, is biologically transformed by primary producers that convert CO2 to organic carbon during photosynthesis, which is then respired back to the gaseous form by heterotrophs. The cycling of other elements such as nitrogen, phosphorus and iron, considered essential nutrients for living organisms, are directly linked to carbon through the formation of organic matter resulting from primary production. In the ocean, a portion of organic carbon resists immediate degradation in the euphotic layer and can be exported to the deep layers to be respired far away from surface waters, thus contributing to the development of an oceanic sink for atmospheric CO2. However, controls on the production of resistant fractions with potential for export are both unresolved and the subject of this dissertation. The first chapter contains a general introduction to organic carbon dynamics in the ocean, its state-of-the-art, and the itemized objectives of this dissertation. In the second chapter, I use incubations of natural microbial populations to demonstrate that the production of a resistant dissolved organic carbon (DOC) fraction is controlled by the initial availability of nutrients to the microbial community. In the third chapter, I apply this concept to the upper northeast Pacific Ocean, where seasonal measurements of organic and inorganic parameters were taken from multiple cruises carried out between 2017 and 2018. I show that organic carbon production and accumulation in the region is seasonally variable: in the wintertime, vertical mixing brings inorganic nutrients to the euphotic layer that fuel organic carbon production in spring and summer, with a variable fraction accumulating as DOC. For the same region, in the fourth chapter, I present a novel application of Bio-Argo float (i.e., BGC float) data to estimate net organic carbon production with high temporal resolution, with ability to differentiate total and dissolved organic carbon fractions. The method was applied to Bio-Argo data collected from 2009 to 2018, and improved temporal resolution of net organic carbon production estimations without the need of ship-based sampling. The highest and lowest production happened during the two consecutive summers of 2014 and 2015, respectively, and controls on the variability were investigated. Using Bio-Argo float and historical data from the region, I show that warm events driven by ocean-atmospheric oscillations, occurring between 2013 and 2016, restricted winter mixing during two consecutive years. The enhanced stratification decreased the nutrient stocks in the upper ocean, which greatly reduced further organic carbon production and, thus, its prospects for export to the deep ocean. The last section of this dissertation is an Appendix that contains preliminary results from an incubation experiment. The study aimed to evaluate the preferential consumption of particulate versus dissolved organic carbon (POC versus DOC, respectively) by surface ocean microbes. The incubation outcome indicates that chemical compounds from the POC fraction are remineralized faster than those comprising the DOC fraction. Although the result is preliminary, it provides insights on the preferential consumption of each organic carbon pool once they are freshly released to the environment.
590
$a
School code: 0125.
650
4
$a
Biogeochemistry.
$3
545717
650
4
$a
Chemical oceanography.
$3
516760
650
4
$a
Environmental studies.
$3
2122803
653
$a
Dissolved organic carbon
653
$a
Dissolved organic matter
653
$a
Dissolved organic nitrogen
653
$a
El nino
653
$a
Net community production
653
$a
Warm events
690
$a
0425
690
$a
0403
690
$a
0477
710
2
$a
University of Miami.
$b
Marine and Atmospheric Chemistry (Marine).
$3
1677809
773
0
$t
Dissertations Abstracts International
$g
81-04B.
790
$a
0125
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13904761
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9421091
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入