語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Aggregating Information for Optimal ...
~
Li, Xiao.
FindBook
Google Book
Amazon
博客來
Aggregating Information for Optimal Portfolio Weights.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Aggregating Information for Optimal Portfolio Weights./
作者:
Li, Xiao.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
89 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-11, Section: A.
Contained By:
Dissertations Abstracts International80-11A.
標題:
Finance. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13860149
ISBN:
9781392089316
Aggregating Information for Optimal Portfolio Weights.
Li, Xiao.
Aggregating Information for Optimal Portfolio Weights.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 89 p.
Source: Dissertations Abstracts International, Volume: 80-11, Section: A.
Thesis (Ph.D.)--The University of Arizona, 2019.
This item must not be sold to any third party vendors.
I attempt to address an important issue of the portfolio allocation literature - none of the allocation rules from prior studies consistently delivers good performance. I develop an approach that aggregates information from a wide range of sources to make allocation decisions. Specifically, this approach models the optimal portfolio weights as a function of a broad set of portfolio weights implied by prior allocation rules, and determines the relative contribution from each allocation rule through Elastic Net, a machine-learning technique. Out-of-sample tests suggest that my approach consistently achieves good performance, whereas none of the alternative rules can match the consistency.
ISBN: 9781392089316Subjects--Topical Terms:
542899
Finance.
Aggregating Information for Optimal Portfolio Weights.
LDR
:01724nmm a2200313 4500
001
2264156
005
20200423112736.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392089316
035
$a
(MiAaPQ)AAI13860149
035
$a
(MiAaPQ)arizona:16997
035
$a
AAI13860149
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Li, Xiao.
$3
1953967
245
1 0
$a
Aggregating Information for Optimal Portfolio Weights.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
89 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-11, Section: A.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Cederburg, Scott.
502
$a
Thesis (Ph.D.)--The University of Arizona, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
I attempt to address an important issue of the portfolio allocation literature - none of the allocation rules from prior studies consistently delivers good performance. I develop an approach that aggregates information from a wide range of sources to make allocation decisions. Specifically, this approach models the optimal portfolio weights as a function of a broad set of portfolio weights implied by prior allocation rules, and determines the relative contribution from each allocation rule through Elastic Net, a machine-learning technique. Out-of-sample tests suggest that my approach consistently achieves good performance, whereas none of the alternative rules can match the consistency.
590
$a
School code: 0009.
650
4
$a
Finance.
$3
542899
690
$a
0508
710
2
$a
The University of Arizona.
$b
Management.
$3
1029442
773
0
$t
Dissertations Abstracts International
$g
80-11A.
790
$a
0009
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13860149
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9416390
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入