語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fast 3D Inhomogeneous Radiative Tran...
~
Zhang, Kun.
FindBook
Google Book
Amazon
博客來
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking./
作者:
Zhang, Kun.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
163 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Aerospace engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13808249
ISBN:
9781392164631
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking.
Zhang, Kun.
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 163 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
This item must not be sold to any third party vendors.
A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model incorporating aspherical frozen hydrometeors based on the NASA/GSFC OpenSSP database is presented to study 3-dimensional (3D) effects of horizontal inhomogeneous clouds on computed microwave radiances and facilitate satellite radiance assimilation over horizontally inhomogeneous weather conditions. HI-UMRT provides a coupled two-Stokes parameter numerical radiance solution of the 3D radiative transfer equation by embedding the existing 1D UMRT algorithm into an iterative perturbation scheme. The horizontal derivatives in radiances of lower perturbation order are treated as the source functions of the azimuthal harmonic perturbation radiative transfer equations that are readily solved by the planar-stratified 1D UMRT algorithm.The 1D UMRT algorithm requires symmetry of the transition matrix for the discretized planar-stratified radiative transfer equation to realize numerically stable and accurate matrix operations as required by the discrete-ordinate eigenanalysis method. In this thesis, the necessary block-diagonal structure of the full Stokes matrix for randomly oriented OpenSSP aspherical hydrometeors is shown to be maintained, albeit with small asymmetric deviations which introduce small asymmetric components into the transition matrix that are negligible for most passive microwave remote sensing applications. An upper bound of the brightness temperature error calculated by neglecting the asymmetric components of the transition matrix under even extreme atmospheric conditions is shown to be small. Hence the OpenSSP hydrometeor database can be reliably used within the UMRT model.Block-diagonal Stokes matrix elements along with other single-scattering parameters of OpenSSP hydrometeors were subsequently used in radiative simulations of multi-stream dual-polarization radiances for a simulated hurricane event to demonstrate the inherent numerical stability and utility of the extended 1D UMRT algorithm. An intercomparison of computed upwelling radiances for a multiphase distribution of aspherical OpenSSP hydrometeors versus a mass-equivalent Mie hydrometeor polydispersion for key sensing frequencies from 10 to 874 GHz shows the considerable impact of complex (versus simple spherical) hydrometeors on predicted microwave radiances.Further, a numerical performance assessment shows that the increase in computing time for the 3D HI-UMRT model relative to the 1D UMRT model is moderate since (i) the computationally efficient UMRT engine is applied only to the perturbation equations with non-trivial solutions, and (ii) the layer parameters for the 1D solution are reused for all higher perturbation orders. Numerical simulations using HI-UMRT based on 3D cloud profiles simulated by the WRF numerical weather model illustrate the convergence of the iterative perturbation series. An intercomparison of top-of-atmosphere brightness temperature images for HI-UMRT versus the planar-stratified UMRT model illustrates the considerable impact of cloud horizontal inhomogeneities on computed upwelling microwave radiances.The microwave radiances simulated using UMRT at 118 and 183 GHz based on the Orbital Micro Systems Inc. Global Earth Monitoring System (GEMS) CubeSat constellation concept have been used in an all-weather microwave data assimilation scheme to facilitate precipitation locking of hydrometeor state variables in severe weather. The capability of first frame precipitation locking can be achieved based on constrained extended Kalman filtering (XKF), statistical estimation of a flow-dependent background error covariance matrix, and appropriate update of state variables using nonlinear iterative method. Preliminary simulation results demonstrate the potential for assimilating both thermodynamic and hydrometeor variables in first-frame locking iterations.
ISBN: 9781392164631Subjects--Topical Terms:
1002622
Aerospace engineering.
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking.
LDR
:05054nmm a2200337 4500
001
2263930
005
20200331094421.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392164631
035
$a
(MiAaPQ)AAI13808249
035
$a
(MiAaPQ)colorado:15875
035
$a
AAI13808249
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Zhang, Kun.
$3
1275310
245
1 0
$a
Fast 3D Inhomogeneous Radiative Transfer Model Incorporating Aspherical Frozen Hydrometeors with Application to Precipitation Locking.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
163 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Gasiewski, Albin J.
502
$a
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
A horizontally inhomogeneous unified microwave radiative transfer (HI-UMRT) model incorporating aspherical frozen hydrometeors based on the NASA/GSFC OpenSSP database is presented to study 3-dimensional (3D) effects of horizontal inhomogeneous clouds on computed microwave radiances and facilitate satellite radiance assimilation over horizontally inhomogeneous weather conditions. HI-UMRT provides a coupled two-Stokes parameter numerical radiance solution of the 3D radiative transfer equation by embedding the existing 1D UMRT algorithm into an iterative perturbation scheme. The horizontal derivatives in radiances of lower perturbation order are treated as the source functions of the azimuthal harmonic perturbation radiative transfer equations that are readily solved by the planar-stratified 1D UMRT algorithm.The 1D UMRT algorithm requires symmetry of the transition matrix for the discretized planar-stratified radiative transfer equation to realize numerically stable and accurate matrix operations as required by the discrete-ordinate eigenanalysis method. In this thesis, the necessary block-diagonal structure of the full Stokes matrix for randomly oriented OpenSSP aspherical hydrometeors is shown to be maintained, albeit with small asymmetric deviations which introduce small asymmetric components into the transition matrix that are negligible for most passive microwave remote sensing applications. An upper bound of the brightness temperature error calculated by neglecting the asymmetric components of the transition matrix under even extreme atmospheric conditions is shown to be small. Hence the OpenSSP hydrometeor database can be reliably used within the UMRT model.Block-diagonal Stokes matrix elements along with other single-scattering parameters of OpenSSP hydrometeors were subsequently used in radiative simulations of multi-stream dual-polarization radiances for a simulated hurricane event to demonstrate the inherent numerical stability and utility of the extended 1D UMRT algorithm. An intercomparison of computed upwelling radiances for a multiphase distribution of aspherical OpenSSP hydrometeors versus a mass-equivalent Mie hydrometeor polydispersion for key sensing frequencies from 10 to 874 GHz shows the considerable impact of complex (versus simple spherical) hydrometeors on predicted microwave radiances.Further, a numerical performance assessment shows that the increase in computing time for the 3D HI-UMRT model relative to the 1D UMRT model is moderate since (i) the computationally efficient UMRT engine is applied only to the perturbation equations with non-trivial solutions, and (ii) the layer parameters for the 1D solution are reused for all higher perturbation orders. Numerical simulations using HI-UMRT based on 3D cloud profiles simulated by the WRF numerical weather model illustrate the convergence of the iterative perturbation series. An intercomparison of top-of-atmosphere brightness temperature images for HI-UMRT versus the planar-stratified UMRT model illustrates the considerable impact of cloud horizontal inhomogeneities on computed upwelling microwave radiances.The microwave radiances simulated using UMRT at 118 and 183 GHz based on the Orbital Micro Systems Inc. Global Earth Monitoring System (GEMS) CubeSat constellation concept have been used in an all-weather microwave data assimilation scheme to facilitate precipitation locking of hydrometeor state variables in severe weather. The capability of first frame precipitation locking can be achieved based on constrained extended Kalman filtering (XKF), statistical estimation of a flow-dependent background error covariance matrix, and appropriate update of state variables using nonlinear iterative method. Preliminary simulation results demonstrate the potential for assimilating both thermodynamic and hydrometeor variables in first-frame locking iterations.
590
$a
School code: 0051.
650
4
$a
Aerospace engineering.
$3
1002622
650
4
$a
Atmospheric sciences.
$3
3168354
650
4
$a
Remote sensing.
$3
535394
690
$a
0538
690
$a
0725
690
$a
0799
710
2
$a
University of Colorado at Boulder.
$b
Electrical Engineering.
$3
1025672
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0051
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13808249
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9416164
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入