語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Centrifuge Modeling of Dense Granula...
~
Badanagki, Mahir.
FindBook
Google Book
Amazon
博客來
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures./
作者:
Badanagki, Mahir.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
427 p.
附註:
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Contained By:
Dissertations Abstracts International80-12B.
標題:
Geological engineering. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13856245
ISBN:
9781392164860
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures.
Badanagki, Mahir.
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 427 p.
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
This item must not be sold to any third party vendors.
Soil liquefaction and ground failure have been a major source of damage to slopes, embankments, and structures during previous earthquakes. The risk of liquefaction and associated ground deformations can be reduced by various forms of improvement, including the granular column technique. Granular columns are known to be cost effective and environmentally friendly, and they have been in use since the 1970's to mitigate the liquefaction hazard. Granular columns mitigate the consequences of soil liquefaction through a combination of: 1) installation-induced ground densification, 2) increase in lateral effective stresses in the surrounding soil, 3) increase in shear stiffness, and 4) enhanced drainage. These mechanisms aim to reduce the liquefaction potential of the improved soil or the resulting deformations. However, the independent influence and contribution of these mitigation mechanisms (in particular shear stiffness and drainage) on excess pore pressures, accelerations, and lateral and vertical deformations experienced in level and gently sloped sites are not sufficiently understood to facilitate their reliable performance-based design. In addition, the net influence of granular columns on competing mechanisms leading to lateral and vertical deformations with or without a structure is uncertain and requires further investigation, particularly in the presence of stratigraphic variations and layering expected in natural deposits.In this dissertation, centrifuge experimental results are presented to investigate the influence of dense granular columns and their properties on the performance of layered liquefiable deposits with stratigraphic variations with and without a structure. The first set of experiments enabled investigation of granular columns in level sites with uniformly layered liquefiable deposits as well as gently sloping sites with a slight variation in the thickness of the liquefiable layer. No structure was present in these tests. The spacing and drainage capacity of columns were varied. In the second set of experiments, the same granular columns were evaluated in non-uniform liquefiable deposits with a gentle surface slope and a level surface. The presence of a shallow-founded structure and its seismic interaction with soil was also evaluated in terms of the performance of the soil-mitigation-foundation-structure system.The experiments showed that granular columns can be effective in reducing the lateral and vertical deformations in gently sloped sites only if closely spaced (area replacement ratios exceeding about 20%) and able to enhance drainage. Hence, it is critical in such conditions to avoid clogging in subsequent events. Test results also showed that a slight variation in the liquefiable layer thickness can produce large permanent lateral ground deformations, even in the absence of a surface slope or a structure, which could damage utilities and lifelines. Use of granular columns below the foundation could effectively reduce the magnitude of void redistribution and shear strain localization underneath the sand-silt interface, hence reducing net settlements, rotations, and lateral displacements. However, granular columns could transfer greater accelerations to and seismic deformations in the superstructure, depending on the amplitude and frequency content of the motion in relation to the structure's modal frequencies.This dissertation provides a comprehensive experimental database that aims to improve our fundamental understanding of deformations in layered liquefiable deposits of varying stratigraphy, when unmitigated and when mitigated with granular columns. Overall, the results point to the importance of considering even slight variations in surface slope, liquefiable layer thickness, as well as seismic soil-foundation-structure interaction when designing mitigation strategies in the context of system performance. However, additional physical and numerical modeling with a range of soil, structural, and ground motion characteristics are required before design recommendations can be provided under generalized conditions.
ISBN: 9781392164860Subjects--Topical Terms:
2122713
Geological engineering.
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures.
LDR
:05269nmm a2200337 4500
001
2263397
005
20200316072002.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392164860
035
$a
(MiAaPQ)AAI13856245
035
$a
(MiAaPQ)colorado:15907
035
$a
AAI13856245
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Badanagki, Mahir.
$3
3540489
245
1 0
$a
Centrifuge Modeling of Dense Granular Columns in Layered Liquefiable Soils with Varying Stratigraphy and Overlying Structures.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
427 p.
500
$a
Source: Dissertations Abstracts International, Volume: 80-12, Section: B.
500
$a
Publisher info.: Dissertation/Thesis.
500
$a
Advisor: Dashti, Shideh.
502
$a
Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
506
$a
This item must not be sold to any third party vendors.
520
$a
Soil liquefaction and ground failure have been a major source of damage to slopes, embankments, and structures during previous earthquakes. The risk of liquefaction and associated ground deformations can be reduced by various forms of improvement, including the granular column technique. Granular columns are known to be cost effective and environmentally friendly, and they have been in use since the 1970's to mitigate the liquefaction hazard. Granular columns mitigate the consequences of soil liquefaction through a combination of: 1) installation-induced ground densification, 2) increase in lateral effective stresses in the surrounding soil, 3) increase in shear stiffness, and 4) enhanced drainage. These mechanisms aim to reduce the liquefaction potential of the improved soil or the resulting deformations. However, the independent influence and contribution of these mitigation mechanisms (in particular shear stiffness and drainage) on excess pore pressures, accelerations, and lateral and vertical deformations experienced in level and gently sloped sites are not sufficiently understood to facilitate their reliable performance-based design. In addition, the net influence of granular columns on competing mechanisms leading to lateral and vertical deformations with or without a structure is uncertain and requires further investigation, particularly in the presence of stratigraphic variations and layering expected in natural deposits.In this dissertation, centrifuge experimental results are presented to investigate the influence of dense granular columns and their properties on the performance of layered liquefiable deposits with stratigraphic variations with and without a structure. The first set of experiments enabled investigation of granular columns in level sites with uniformly layered liquefiable deposits as well as gently sloping sites with a slight variation in the thickness of the liquefiable layer. No structure was present in these tests. The spacing and drainage capacity of columns were varied. In the second set of experiments, the same granular columns were evaluated in non-uniform liquefiable deposits with a gentle surface slope and a level surface. The presence of a shallow-founded structure and its seismic interaction with soil was also evaluated in terms of the performance of the soil-mitigation-foundation-structure system.The experiments showed that granular columns can be effective in reducing the lateral and vertical deformations in gently sloped sites only if closely spaced (area replacement ratios exceeding about 20%) and able to enhance drainage. Hence, it is critical in such conditions to avoid clogging in subsequent events. Test results also showed that a slight variation in the liquefiable layer thickness can produce large permanent lateral ground deformations, even in the absence of a surface slope or a structure, which could damage utilities and lifelines. Use of granular columns below the foundation could effectively reduce the magnitude of void redistribution and shear strain localization underneath the sand-silt interface, hence reducing net settlements, rotations, and lateral displacements. However, granular columns could transfer greater accelerations to and seismic deformations in the superstructure, depending on the amplitude and frequency content of the motion in relation to the structure's modal frequencies.This dissertation provides a comprehensive experimental database that aims to improve our fundamental understanding of deformations in layered liquefiable deposits of varying stratigraphy, when unmitigated and when mitigated with granular columns. Overall, the results point to the importance of considering even slight variations in surface slope, liquefiable layer thickness, as well as seismic soil-foundation-structure interaction when designing mitigation strategies in the context of system performance. However, additional physical and numerical modeling with a range of soil, structural, and ground motion characteristics are required before design recommendations can be provided under generalized conditions.
590
$a
School code: 0051.
650
4
$a
Geological engineering.
$3
2122713
650
4
$a
Soil sciences.
$3
2122699
650
4
$a
Civil engineering.
$3
860360
690
$a
0466
690
$a
0481
690
$a
0543
710
2
$a
University of Colorado at Boulder.
$b
Civil, Environmental, and Architectural Engineering.
$3
3350108
773
0
$t
Dissertations Abstracts International
$g
80-12B.
790
$a
0051
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13856245
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415631
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入