語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Statistical Physics of Information P...
~
Wang, Ching-Hao.
FindBook
Google Book
Amazon
博客來
Statistical Physics of Information Processing by Cells.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Statistical Physics of Information Processing by Cells./
作者:
Wang, Ching-Hao.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
221 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Contained By:
Dissertations Abstracts International81-02B.
標題:
Biophysics. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13421157
ISBN:
9781085588133
Statistical Physics of Information Processing by Cells.
Wang, Ching-Hao.
Statistical Physics of Information Processing by Cells.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 221 p.
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Thesis (Ph.D.)--Boston University, 2019.
This item must not be sold to any third party vendors.
This thesis provides a physics account of the ability of cells to integrate environmental information to make complex decisions, a process commonly known as signaling. It strives to address the following questions: (i) How do cells relate the state of the environment (e.g. presence/absence of specific molecules) to a desired response such as gene expression? (ii) How can cells robustly transfer information? (iii) Is there a biophysical limit to a cells' ability to process information? (iv) Can we use the answers to the above questions to formulate biophysical principles that inform us about the evolution of signaling? Throughout, I borrow techniques from non-equilibrium statistical physics, statistical learning theory, information theory and information geometry to construct biophysical models capable of making quantitative experimental predictions. Finally, I address the connection of energy expenditure and biological efficiency by zeroing in on a process unique to eukaryotic cells-- nuclear transport. The thesis concludes with a discussion of our theory and its implications for synthetic biology.
ISBN: 9781085588133Subjects--Topical Terms:
518360
Biophysics.
Statistical Physics of Information Processing by Cells.
LDR
:02185nmm a2200337 4500
001
2263314
005
20200316071943.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781085588133
035
$a
(MiAaPQ)AAI13421157
035
$a
AAI13421157
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Wang, Ching-Hao.
$3
3540400
245
1 0
$a
Statistical Physics of Information Processing by Cells.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
221 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
500
$a
Advisor: Mehta, Pankaj.
502
$a
Thesis (Ph.D.)--Boston University, 2019.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
This thesis provides a physics account of the ability of cells to integrate environmental information to make complex decisions, a process commonly known as signaling. It strives to address the following questions: (i) How do cells relate the state of the environment (e.g. presence/absence of specific molecules) to a desired response such as gene expression? (ii) How can cells robustly transfer information? (iii) Is there a biophysical limit to a cells' ability to process information? (iv) Can we use the answers to the above questions to formulate biophysical principles that inform us about the evolution of signaling? Throughout, I borrow techniques from non-equilibrium statistical physics, statistical learning theory, information theory and information geometry to construct biophysical models capable of making quantitative experimental predictions. Finally, I address the connection of energy expenditure and biological efficiency by zeroing in on a process unique to eukaryotic cells-- nuclear transport. The thesis concludes with a discussion of our theory and its implications for synthetic biology.
590
$a
School code: 0017.
650
4
$a
Biophysics.
$3
518360
650
4
$a
Statistical physics.
$3
536281
650
4
$a
Cellular biology.
$3
3172791
650
4
$a
Genetics.
$3
530508
690
$a
0786
690
$a
0217
690
$a
0379
690
$a
0369
710
2
$a
Boston University.
$b
Physics GRS.
$3
3181608
773
0
$t
Dissertations Abstracts International
$g
81-02B.
790
$a
0017
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13421157
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415548
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入