語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Regularization Perspective on Spec...
~
Liao, Zhenyu.
FindBook
Google Book
Amazon
博客來
A Regularization Perspective on Spectral Sparsification.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A Regularization Perspective on Spectral Sparsification./
作者:
Liao, Zhenyu.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, : 2019,
面頁冊數:
80 p.
附註:
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Contained By:
Dissertations Abstracts International81-06B.
標題:
Computer science. -
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13424514
ISBN:
9781392668023
A Regularization Perspective on Spectral Sparsification.
Liao, Zhenyu.
A Regularization Perspective on Spectral Sparsification.
- Ann Arbor : ProQuest Dissertations & Theses, 2019 - 80 p.
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Thesis (Ph.D.)--Boston University, 2019.
This item must not be sold to any third party vendors.
In this thesis, we study how to obtain faster algorithms for spectral graph sparsifi-cation by applying continuous optimization techniques. Spectral sparsification is thetask of reducing the number of edges in a graph while maintaining a spectral ap-proximation to the original graph. Our key conceptual contribution is the connectionbetween spectral sparsification and regret minimization in online matrix games, i.e.,online convex programming over the positive semidefinite cone. While this connec-tion was previously noted [24, 47], we formally reduce graph sparsification to a matrixregret minimization problem, which we solve by applying mirror descent with a non-entropic regularizer. In this way, we not only obtain a new proof of the existenceof linear-sized spectral sparsifiers, originally given by [19], but improve the runningtime from Ω(n4)([19, 54]) to almost quadratic. More generally, our framework canalso be applied for the matrix multi-armed bandit online learning problem to reducethe regret bound to the optimalO(√nT), compared to theO(√nTlog(n) given bythe traditional matrix-entropy regulariz.
ISBN: 9781392668023Subjects--Topical Terms:
523869
Computer science.
A Regularization Perspective on Spectral Sparsification.
LDR
:02166nmm a2200301 4500
001
2263151
005
20200214113158.5
008
220629s2019 ||||||||||||||||| ||eng d
020
$a
9781392668023
035
$a
(MiAaPQ)AAI13424514
035
$a
AAI13424514
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Liao, Zhenyu.
$3
3540235
245
1 0
$a
A Regularization Perspective on Spectral Sparsification.
260
1
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2019
300
$a
80 p.
500
$a
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
500
$a
Advisor: Orecchia, Lorenzo.
502
$a
Thesis (Ph.D.)--Boston University, 2019.
506
$a
This item must not be sold to any third party vendors.
506
$a
This item must not be added to any third party search indexes.
520
$a
In this thesis, we study how to obtain faster algorithms for spectral graph sparsifi-cation by applying continuous optimization techniques. Spectral sparsification is thetask of reducing the number of edges in a graph while maintaining a spectral ap-proximation to the original graph. Our key conceptual contribution is the connectionbetween spectral sparsification and regret minimization in online matrix games, i.e.,online convex programming over the positive semidefinite cone. While this connec-tion was previously noted [24, 47], we formally reduce graph sparsification to a matrixregret minimization problem, which we solve by applying mirror descent with a non-entropic regularizer. In this way, we not only obtain a new proof of the existenceof linear-sized spectral sparsifiers, originally given by [19], but improve the runningtime from Ω(n4)([19, 54]) to almost quadratic. More generally, our framework canalso be applied for the matrix multi-armed bandit online learning problem to reducethe regret bound to the optimalO(√nT), compared to theO(√nTlog(n) given bythe traditional matrix-entropy regulariz.
590
$a
School code: 0017.
650
4
$a
Computer science.
$3
523869
690
$a
0984
710
2
$a
Boston University.
$b
Computer Science GRS.
$3
3169364
773
0
$t
Dissertations Abstracts International
$g
81-06B.
790
$a
0017
791
$a
Ph.D.
792
$a
2019
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=13424514
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415385
電子資源
11.線上閱覽_V
電子書
EB
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入