語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data warehousing and analytics = fue...
~
Taniar, David.
FindBook
Google Book
Amazon
博客來
Data warehousing and analytics = fueling the data engine /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Data warehousing and analytics/ by David Taniar, Wenny Rahayu.
其他題名:
fueling the data engine /
作者:
Taniar, David.
其他作者:
Rahayu, Wenny.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
1 online resource (xviii, 435 p.) :ill. (some col.), digital ;24 cm.
內容註:
1. Introduction -- Part I: Star Schema -- 2. Simple Star Schemas -- 3. Creating Facts and Dimensions: More Complex Processes -- Part II: Snowflake and Bridge Tables -- 4. Hierarchies -- 5. Bridge Tables -- 6. Temporal Data Warehousing -- Part III: Advanced Dimension -- 7. Determinant Dimensions -- 8. Junk Dimensions -- 9. Dimension Keys -- 10. One-Attribute Dimensions -- Part IV: Multi-Fact and Multi-Input -- 11. Multi-Fact Star Schemas -- 12. Slicing a Fact -- 13. Multi-Input Operational Databases -- Part V: Data Warehousing Granularity and Evolution -- 14. Data Warehousing Granularity and Levels of Aggregation -- 15. Designing Lowest-Level Star Schemas -- 16. Levels of Aggregation: Adding and Removing Dimensions -- 17. Levels of Aggregation and Bridge Tables -- 18. Active Data Warehousing -- Part VI: OLAP, Business Intelligence, and Data Analytics -- 19. Online Analytical Processing (OLAP) -- 20. Pre- and Post-Data Warehousing -- 21. Data Analytics for Data Warehousing.
Contained By:
Springer Nature eBook
標題:
Data warehousing. -
電子資源:
https://doi.org/10.1007/978-3-030-81979-8
ISBN:
9783030819798
Data warehousing and analytics = fueling the data engine /
Taniar, David.
Data warehousing and analytics
fueling the data engine /[electronic resource] :by David Taniar, Wenny Rahayu. - Cham :Springer International Publishing :2021. - 1 online resource (xviii, 435 p.) :ill. (some col.), digital ;24 cm. - Data-centric systems and applications,2197-974X. - Data-centric systems and applications..
1. Introduction -- Part I: Star Schema -- 2. Simple Star Schemas -- 3. Creating Facts and Dimensions: More Complex Processes -- Part II: Snowflake and Bridge Tables -- 4. Hierarchies -- 5. Bridge Tables -- 6. Temporal Data Warehousing -- Part III: Advanced Dimension -- 7. Determinant Dimensions -- 8. Junk Dimensions -- 9. Dimension Keys -- 10. One-Attribute Dimensions -- Part IV: Multi-Fact and Multi-Input -- 11. Multi-Fact Star Schemas -- 12. Slicing a Fact -- 13. Multi-Input Operational Databases -- Part V: Data Warehousing Granularity and Evolution -- 14. Data Warehousing Granularity and Levels of Aggregation -- 15. Designing Lowest-Level Star Schemas -- 16. Levels of Aggregation: Adding and Removing Dimensions -- 17. Levels of Aggregation and Bridge Tables -- 18. Active Data Warehousing -- Part VI: OLAP, Business Intelligence, and Data Analytics -- 19. Online Analytical Processing (OLAP) -- 20. Pre- and Post-Data Warehousing -- 21. Data Analytics for Data Warehousing.
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics) This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
ISBN: 9783030819798
Standard No.: 10.1007/978-3-030-81979-8doiSubjects--Topical Terms:
606996
Data warehousing.
LC Class. No.: QA76.9.D37 / T36 2021
Dewey Class. No.: 005.745
Data warehousing and analytics = fueling the data engine /
LDR
:03676nmm a2200337 a 4500
001
2262291
003
DE-He213
005
20220204191329.0
006
m o d
007
cr nn 008maaau
008
220616s2021 sz s 0 eng d
020
$a
9783030819798
$q
(electronic bk.)
020
$a
9783030819781
$q
(paper)
024
7
$a
10.1007/978-3-030-81979-8
$2
doi
035
$a
978-3-030-81979-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D37
$b
T36 2021
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
005.745
$2
23
090
$a
QA76.9.D37
$b
T164 2021
100
1
$a
Taniar, David.
$3
850122
245
1 0
$a
Data warehousing and analytics
$h
[electronic resource] :
$b
fueling the data engine /
$c
by David Taniar, Wenny Rahayu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
1 online resource (xviii, 435 p.) :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Data-centric systems and applications,
$x
2197-974X
505
0
$a
1. Introduction -- Part I: Star Schema -- 2. Simple Star Schemas -- 3. Creating Facts and Dimensions: More Complex Processes -- Part II: Snowflake and Bridge Tables -- 4. Hierarchies -- 5. Bridge Tables -- 6. Temporal Data Warehousing -- Part III: Advanced Dimension -- 7. Determinant Dimensions -- 8. Junk Dimensions -- 9. Dimension Keys -- 10. One-Attribute Dimensions -- Part IV: Multi-Fact and Multi-Input -- 11. Multi-Fact Star Schemas -- 12. Slicing a Fact -- 13. Multi-Input Operational Databases -- Part V: Data Warehousing Granularity and Evolution -- 14. Data Warehousing Granularity and Levels of Aggregation -- 15. Designing Lowest-Level Star Schemas -- 16. Levels of Aggregation: Adding and Removing Dimensions -- 17. Levels of Aggregation and Bridge Tables -- 18. Active Data Warehousing -- Part VI: OLAP, Business Intelligence, and Data Analytics -- 19. Online Analytical Processing (OLAP) -- 20. Pre- and Post-Data Warehousing -- 21. Data Analytics for Data Warehousing.
520
$a
This textbook covers all central activities of data warehousing and analytics, including transformation, preparation, aggregation, integration, and analysis. It discusses the full spectrum of the journey of data from operational/transactional databases, to data warehouses and data analytics; as well as the role that data warehousing plays in the data processing lifecycle. It also explains in detail how data warehouses may be used by data engines, such as BI tools and analytics algorithms to produce reports, dashboards, patterns, and other useful information and knowledge. The book is divided into six parts, ranging from the basics of data warehouse design (Part I - Star Schema, Part II - Snowflake and Bridge Tables, Part III - Advanced Dimensions, and Part IV - Multi-Fact and Multi-Input), to more advanced data warehousing concepts (Part V - Data Warehousing and Evolution) and data analytics (Part VI - OLAP, BI, and Analytics) This textbook approaches data warehousing from the case study angle. Each chapter presents one or more case studies to thoroughly explain the concepts and has different levels of difficulty, hence learning is incremental. In addition, every chapter has also a section on further readings which give pointers and references to research papers related to the chapter. All these features make the book ideally suited for either introductory courses on data warehousing and data analytics, or even for self-studies by professionals. The book is accompanied by a web page that includes all the used datasets and codes as well as slides and solutions to exercises.
650
0
$a
Data warehousing.
$3
606996
650
1 4
$a
Database Management.
$3
891010
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Data Analysis and Big Data.
$3
3538537
650
2 4
$a
Information Storage and Retrieval.
$3
761906
700
1
$a
Rahayu, Wenny.
$3
3538536
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Data-centric systems and applications.
$3
1619753
856
4 0
$u
https://doi.org/10.1007/978-3-030-81979-8
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9415004
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D37 T36 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入