語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analysis and classification of EEG s...
~
Paszkiel, Szczepan.
FindBook
Google Book
Amazon
博客來
Analysis and classification of EEG signals for brain-computer interfaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Analysis and classification of EEG signals for brain-computer interfaces/ by Szczepan Paszkiel.
作者:
Paszkiel, Szczepan.
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
vi, 132 p. :ill., digital ;24 cm.
內容註:
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
Contained By:
Springer Nature eBook
標題:
Brain-computer interfaces. -
電子資源:
https://doi.org/10.1007/978-3-030-30581-9
ISBN:
9783030305819
Analysis and classification of EEG signals for brain-computer interfaces
Paszkiel, Szczepan.
Analysis and classification of EEG signals for brain-computer interfaces
[electronic resource] /by Szczepan Paszkiel. - Cham :Springer International Publishing :2020. - vi, 132 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.8521860-949X ;. - Studies in computational intelligence ;v.852..
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
ISBN: 9783030305819
Standard No.: 10.1007/978-3-030-30581-9doiSubjects--Topical Terms:
908299
Brain-computer interfaces.
LC Class. No.: QP360.7 / .P37 2020
Dewey Class. No.: 612.80285
Analysis and classification of EEG signals for brain-computer interfaces
LDR
:02228nmm a2200337 a 4500
001
2258272
003
DE-He213
005
20200701022721.0
006
m d
007
cr nn 008maaau
008
220420s2020 sz s 0 eng d
020
$a
9783030305819
$q
(electronic bk.)
020
$a
9783030305802
$q
(paper)
024
7
$a
10.1007/978-3-030-30581-9
$2
doi
035
$a
978-3-030-30581-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QP360.7
$b
.P37 2020
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
612.80285
$2
23
090
$a
QP360.7
$b
.P293 2020
100
1
$a
Paszkiel, Szczepan.
$3
3301939
245
1 0
$a
Analysis and classification of EEG signals for brain-computer interfaces
$h
[electronic resource] /
$c
by Szczepan Paszkiel.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
vi, 132 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.852
505
0
$a
Chapter 1. Introduction -- Chapter 2. Data acquisition methods for human brain activity -- Chapter 3. Brain-computer interface (BCI) technology, etc.
520
$a
This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology. In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.
650
0
$a
Brain-computer interfaces.
$3
908299
650
0
$a
Electroencephalography.
$3
543293
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
3381533
650
2 4
$a
Neurobiology.
$3
588707
650
2 4
$a
Artificial Intelligence.
$3
769149
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v.852.
$3
3530178
856
4 0
$u
https://doi.org/10.1007/978-3-030-30581-9
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9413900
電子資源
11.線上閱覽_V
電子書
EB QP360.7 .P37 2020
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入