語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
User-defined tensor data analysis
~
Dong, Bin.
FindBook
Google Book
Amazon
博客來
User-defined tensor data analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
User-defined tensor data analysis/ by Bin Dong, Kesheng Wu, Suren Byna.
作者:
Dong, Bin.
其他作者:
Wu, Kesheng.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xii, 101 p. :ill., digital ;24 cm.
內容註:
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
Contained By:
Springer Nature eBook
標題:
Calculus of tensors - Data processing. -
電子資源:
https://doi.org/10.1007/978-3-030-70750-7
ISBN:
9783030707507
User-defined tensor data analysis
Dong, Bin.
User-defined tensor data analysis
[electronic resource] /by Bin Dong, Kesheng Wu, Suren Byna. - Cham :Springer International Publishing :2021. - xii, 101 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5776. - SpringerBriefs in computer science..
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS) FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
ISBN: 9783030707507
Standard No.: 10.1007/978-3-030-70750-7doiSubjects--Topical Terms:
2072830
Calculus of tensors
--Data processing.
LC Class. No.: QA433
Dewey Class. No.: 515.63
User-defined tensor data analysis
LDR
:04546nmm a2200349 a 4500
001
2251166
003
DE-He213
005
20210929101952.0
006
m d
007
cr nn 008maaau
008
220215s2021 sz s 0 eng d
020
$a
9783030707507
$q
(electronic bk.)
020
$a
9783030707491
$q
(paper)
024
7
$a
10.1007/978-3-030-70750-7
$2
doi
035
$a
978-3-030-70750-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA433
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
UMT
$2
thema
082
0 4
$a
515.63
$2
23
090
$a
QA433
$b
.D682 2021
100
1
$a
Dong, Bin.
$3
3517867
245
1 0
$a
User-defined tensor data analysis
$h
[electronic resource] /
$c
by Bin Dong, Kesheng Wu, Suren Byna.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 101 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5776
505
0
$a
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
520
$a
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS) FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
650
0
$a
Calculus of tensors
$x
Data processing.
$3
2072830
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Database Management.
$3
891010
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Data Engineering.
$3
3409361
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Wu, Kesheng.
$3
1953757
700
1
$a
Byna, Suren.
$3
3517868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-3-030-70750-7
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9409275
電子資源
11.線上閱覽_V
電子書
EB QA433
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入