Language:
English
繁體中文
Help
回圖書館首頁
手機版館藏查詢
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
User-defined tensor data analysis
~
Dong, Bin.
Linked to FindBook
Google Book
Amazon
博客來
User-defined tensor data analysis
Record Type:
Electronic resources : Monograph/item
Title/Author:
User-defined tensor data analysis/ by Bin Dong, Kesheng Wu, Suren Byna.
Author:
Dong, Bin.
other author:
Wu, Kesheng.
Published:
Cham :Springer International Publishing : : 2021.,
Description:
xii, 101 p. :ill., digital ;24 cm.
[NT 15003449]:
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
Contained By:
Springer Nature eBook
Subject:
Calculus of tensors - Data processing. -
Online resource:
https://doi.org/10.1007/978-3-030-70750-7
ISBN:
9783030707507
User-defined tensor data analysis
Dong, Bin.
User-defined tensor data analysis
[electronic resource] /by Bin Dong, Kesheng Wu, Suren Byna. - Cham :Springer International Publishing :2021. - xii, 101 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5776. - SpringerBriefs in computer science..
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS) FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
ISBN: 9783030707507
Standard No.: 10.1007/978-3-030-70750-7doiSubjects--Topical Terms:
2072830
Calculus of tensors
--Data processing.
LC Class. No.: QA433
Dewey Class. No.: 515.63
User-defined tensor data analysis
LDR
:04546nmm a2200349 a 4500
001
2251166
003
DE-He213
005
20210929101952.0
006
m d
007
cr nn 008maaau
008
220215s2021 sz s 0 eng d
020
$a
9783030707507
$q
(electronic bk.)
020
$a
9783030707491
$q
(paper)
024
7
$a
10.1007/978-3-030-70750-7
$2
doi
035
$a
978-3-030-70750-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA433
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
072
7
$a
UMT
$2
thema
082
0 4
$a
515.63
$2
23
090
$a
QA433
$b
.D682 2021
100
1
$a
Dong, Bin.
$3
3517867
245
1 0
$a
User-defined tensor data analysis
$h
[electronic resource] /
$c
by Bin Dong, Kesheng Wu, Suren Byna.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 101 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5776
505
0
$a
1. Introduction -- 1.1 Lessons from Big Data Systems -- 1.2 Data Model -- 1. 3 Programming Model High-Performance Data Analysis for Science -- 2. FasTensor Programming Model -- 2.1 Introduction to Tensor Data Model -- 2.2 FasTensor Programming Model -- 2.2.1 Stencils -- 2.2.2 Chunks -- 2.2.3 Overlap -- 2.2.4 Operator: Transform -- 2.2.5 FasTensor Execution Engine -- 2.2.6 FasTensor Scientific Computing Use Cases -- 2.3 Summary -- Illustrated FasTensor User Interface -- 3.1 An Example -- 3.2 The Stencil Class -- 3.2.1 Constructors of the Stencil -- 3.2.2 Parenthesis operator () and ReadPoint -- 3.2.3 SetShape and GetShape -- 3.2.4 SetValue and GetValue -- 3.2.5 ReadNeighbors and WriteNeighbors -- 3.2.6 GetOffsetUpper and GetOffsetLower -- 3.2.7 GetChunkID -- 3.2.8 GetGlobalIndex and GetLocalIndex -- 3.2.9 Exercise of the Stencil class -- 3.3 The Array Class -- 3.3.1 Constructors of Array -- 3.3.2 SetChunkSize, SetChunkSizeByMem, SetChunkSizeByDim, and GetChunkSize -- 3.3.3 SetOverlapSize, SetOverlapSizeByDetection, GetOverlapSize, SetOverlapPadding, and SyncOverlap -- 3.3.4 Transform -- 3.3.5 SetStride and GetStride -- 3.3.6 AppendAttribute, InsertAttribute, GetAttribute and EraseAttribute -- 3.3.7 SetEndpoint and GetEndpoint -- 3.3.8 ControlEndpoint -- 3.3.9 -- ReadArray and WriteArray -- 3.3.10 SetTag and GetTag -- 3.3.11 GetArraySize and SetArraySize -- 3.3.12 Backup and Restore -- 3.3.13 CreateVisFile -- 3.3.14 ReportCost -- 3.3.15 EP_DIR Endpoint -- 3.3.16 EP_HDF5 and Other Endpoints -- Other Functions in FasTensor -- 3.4.1 FT_Init -- 3.4.2 FT_Finalize -- 3.4.3 Data types in FasTensor -- 4. FasTensor in Real Scientific Applications -- 4.1 DAS: Distributed Acoustic Sensing -- 4.2 VPIC: Vector Particle-In-Cell -- Appendix -- A.1 Installation Guide of FasTensor -- A.2 How to Develop a New Endpoint Protocol -- Alphabetical Index -- Bibliography -- References.
520
$a
Ths SpringerBrief introduces FasTensor, a powerful parallel data programming model developed for big data applications. This book also provides a user's guide for installing and using FasTensor. FasTensor enables users to easily express many data analysis operations, which may come from neural networks, scientific computing, or queries from traditional database management systems (DBMS) FasTensor frees users from all underlying and tedious data management tasks, such as data partitioning, communication, and parallel execution. This SpringerBrief gives a high-level overview of the state-of-the-art in parallel data programming model and a motivation for the design of FasTensor. It illustrates the FasTensor application programming interface (API) with an abundance of examples and two real use cases from cutting edge scientific applications. FasTensor can achieve multiple orders of magnitude speedup over Spark and other peer systems in executing big data analysis operations. FasTensor makes programming for data analysis operations at large scale on supercomputers as productively and efficiently as possible. A complete reference of FasTensor includes its theoretical foundations, C++ implementation, and usage in applications. Scientists in domains such as physical and geosciences, who analyze large amounts of data will want to purchase this SpringerBrief. Data engineers who design and develop data analysis software and data scientists, and who use Spark or TensorFlow to perform data analyses, such as training a deep neural network will also find this SpringerBrief useful as a reference tool.
650
0
$a
Calculus of tensors
$x
Data processing.
$3
2072830
650
0
$a
Big data.
$3
2045508
650
1 4
$a
Database Management.
$3
891010
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Data Engineering.
$3
3409361
650
2 4
$a
Machine Learning.
$3
3382522
700
1
$a
Wu, Kesheng.
$3
1953757
700
1
$a
Byna, Suren.
$3
3517868
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in computer science.
$3
1567571
856
4 0
$u
https://doi.org/10.1007/978-3-030-70750-7
950
$a
Computer Science (SpringerNature-11645)
based on 0 review(s)
Location:
ALL
電子資源
Year:
Volume Number:
Items
1 records • Pages 1 •
1
Inventory Number
Location Name
Item Class
Material type
Call number
Usage Class
Loan Status
No. of reservations
Opac note
Attachments
W9409275
電子資源
11.線上閱覽_V
電子書
EB QA433
一般使用(Normal)
On shelf
0
1 records • Pages 1 •
1
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login