語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
An introduction to machine learning
~
Kubat, Miroslav.
FindBook
Google Book
Amazon
博客來
An introduction to machine learning
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
An introduction to machine learning/ by Miroslav Kubat.
作者:
Kubat, Miroslav.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xviii, 458 p. :ill. (some col.), digital ;24 cm.
內容註:
1. Ambitions and Goals of Machine Learning -- 2. Probabilities: Bayesian Classifiers -- 3. Similarities: Nearest-Neighbor Classifiers -- 4. Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5. Decision Trees -- 6. Artificial Neural Networks -- 7. Computational Learning Theory -- 8. Experience from Historical Applications -- 9. Voting Assemblies and Boosting -- 10. Classifiers in the Form of Rule-Sets -- 11. Practical Issues to Know About -- 12. Performance Evaluation -- 13. Statistical Significance -- 14. Induction in Multi-Label Domains -- 15. Unsupervised Learning -- 16. Deep Learning -- 17. Reinforcement Learning: N-Armed Bandits and Episodes -- 18. Reinforcement Learning: From TD(0) to Deep-Q-Learning -- 19. Temporal Learning -- 20. Hidden Markov Models -- 21. Genetic Algorithm -- Bibliography -- Index.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-81935-4
ISBN:
9783030819354
An introduction to machine learning
Kubat, Miroslav.
An introduction to machine learning
[electronic resource] /by Miroslav Kubat. - Third edition. - Cham :Springer International Publishing :2021. - xviii, 458 p. :ill. (some col.), digital ;24 cm.
1. Ambitions and Goals of Machine Learning -- 2. Probabilities: Bayesian Classifiers -- 3. Similarities: Nearest-Neighbor Classifiers -- 4. Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5. Decision Trees -- 6. Artificial Neural Networks -- 7. Computational Learning Theory -- 8. Experience from Historical Applications -- 9. Voting Assemblies and Boosting -- 10. Classifiers in the Form of Rule-Sets -- 11. Practical Issues to Know About -- 12. Performance Evaluation -- 13. Statistical Significance -- 14. Induction in Multi-Label Domains -- 15. Unsupervised Learning -- 16. Deep Learning -- 17. Reinforcement Learning: N-Armed Bandits and Episodes -- 18. Reinforcement Learning: From TD(0) to Deep-Q-Learning -- 19. Temporal Learning -- 20. Hidden Markov Models -- 21. Genetic Algorithm -- Bibliography -- Index.
This textbook offers a comprehensive introduction to Machine Learning techniques and algorithms. This Third Edition covers newer approaches that have become highly topical, including deep learning, and auto-encoding, introductory information about temporal learning and hidden Markov models, and a much more detailed treatment of reinforcement learning. The book is written in an easy-to-understand manner with many examples and pictures, and with a lot of practical advice and discussions of simple applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, rule-induction programs, artificial neural networks, support vector machines, boosting algorithms, unsupervised learning (including Kohonen networks and auto-encoding), deep learning, reinforcement learning, temporal learning (including long short-term memory), hidden Markov models, and the genetic algorithm. Special attention is devoted to performance evaluation, statistical assessment, and to many practical issues ranging from feature selection and feature construction to bias, context, multi-label domains, and the problem of imbalanced classes.
ISBN: 9783030819354
Standard No.: 10.1007/978-3-030-81935-4doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5 / .K83 2021
Dewey Class. No.: 006.3
An introduction to machine learning
LDR
:03018nmm a2200337 a 4500
001
2251155
003
DE-He213
005
20210925152238.0
006
m d
007
cr nn 008maaau
008
220215s2021 sz s 0 eng d
020
$a
9783030819354
$q
(electronic bk.)
020
$a
9783030819347
$q
(paper)
024
7
$a
10.1007/978-3-030-81935-4
$2
doi
035
$a
978-3-030-81935-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
$b
.K83 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.3
$2
23
090
$a
Q325.5
$b
.K95 2021
100
1
$a
Kubat, Miroslav.
$3
2157631
245
1 3
$a
An introduction to machine learning
$h
[electronic resource] /
$c
by Miroslav Kubat.
250
$a
Third edition.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xviii, 458 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
1. Ambitions and Goals of Machine Learning -- 2. Probabilities: Bayesian Classifiers -- 3. Similarities: Nearest-Neighbor Classifiers -- 4. Inter-Class Boundaries: Linear and Polynomial Classifiers -- 5. Decision Trees -- 6. Artificial Neural Networks -- 7. Computational Learning Theory -- 8. Experience from Historical Applications -- 9. Voting Assemblies and Boosting -- 10. Classifiers in the Form of Rule-Sets -- 11. Practical Issues to Know About -- 12. Performance Evaluation -- 13. Statistical Significance -- 14. Induction in Multi-Label Domains -- 15. Unsupervised Learning -- 16. Deep Learning -- 17. Reinforcement Learning: N-Armed Bandits and Episodes -- 18. Reinforcement Learning: From TD(0) to Deep-Q-Learning -- 19. Temporal Learning -- 20. Hidden Markov Models -- 21. Genetic Algorithm -- Bibliography -- Index.
520
$a
This textbook offers a comprehensive introduction to Machine Learning techniques and algorithms. This Third Edition covers newer approaches that have become highly topical, including deep learning, and auto-encoding, introductory information about temporal learning and hidden Markov models, and a much more detailed treatment of reinforcement learning. The book is written in an easy-to-understand manner with many examples and pictures, and with a lot of practical advice and discussions of simple applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, rule-induction programs, artificial neural networks, support vector machines, boosting algorithms, unsupervised learning (including Kohonen networks and auto-encoding), deep learning, reinforcement learning, temporal learning (including long short-term memory), hidden Markov models, and the genetic algorithm. Special attention is devoted to performance evaluation, statistical assessment, and to many practical issues ranging from feature selection and feature construction to bias, context, multi-label domains, and the problem of imbalanced classes.
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Artificial Intelligence.
$3
769149
650
2 4
$a
Big Data/Analytics.
$3
2186785
650
2 4
$a
Probability and Statistics in Computer Science.
$3
891072
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Algorithm Analysis and Problem Complexity.
$3
891007
650
2 4
$a
Computational Intelligence.
$3
1001631
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-81935-4
950
$a
Computer Science (SpringerNature-11645)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9409264
電子資源
11.線上閱覽_V
電子書
EB Q325.5 .K83 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入