語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Time series analysis for the state-s...
~
Hagiwara, Junichiro.
FindBook
Google Book
Amazon
博客來
Time series analysis for the state-space model with R/Stan
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Time series analysis for the state-space model with R/Stan/ by Junichiro Hagiwara.
作者:
Hagiwara, Junichiro.
出版者:
Singapore :Springer Singapore : : 2021.,
面頁冊數:
xiii, 347 p. :ill., digital ;24 cm.
內容註:
Introduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model.
Contained By:
Springer Nature eBook
標題:
Time-series analysis. -
電子資源:
https://doi.org/10.1007/978-981-16-0711-0
ISBN:
9789811607110
Time series analysis for the state-space model with R/Stan
Hagiwara, Junichiro.
Time series analysis for the state-space model with R/Stan
[electronic resource] /by Junichiro Hagiwara. - Singapore :Springer Singapore :2021. - xiii, 347 p. :ill., digital ;24 cm.
Introduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model.
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.
ISBN: 9789811607110
Standard No.: 10.1007/978-981-16-0711-0doiSubjects--Topical Terms:
532530
Time-series analysis.
LC Class. No.: QA280 / .H34 2021
Dewey Class. No.: 519.55
Time series analysis for the state-space model with R/Stan
LDR
:02394nmm a2200325 a 4500
001
2249369
003
DE-He213
005
20210830140144.0
006
m d
007
cr nn 008maaau
008
220103s2021 si s 0 eng d
020
$a
9789811607110
$q
(electronic bk.)
020
$a
9789811607103
$q
(paper)
024
7
$a
10.1007/978-981-16-0711-0
$2
doi
035
$a
978-981-16-0711-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA280
$b
.H34 2021
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
072
7
$a
PBT
$2
thema
082
0 4
$a
519.55
$2
23
090
$a
QA280
$b
.H145 2021
100
1
$a
Hagiwara, Junichiro.
$3
3514735
245
1 0
$a
Time series analysis for the state-space model with R/Stan
$h
[electronic resource] /
$c
by Junichiro Hagiwara.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xiii, 347 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction -- Fundamental of probability and statistics -- Fundamentals of handling time series data with R -- Quick tour of time series analysis -- State-space model -- State estimation in the state-space model -- Batch solution for linear Gaussian state-space model -- Sequential solution for linear Gaussian state-space model -- Introduction and analysis examples of a well-known component model -- Batch solution for general state-space model -- Sequential solution for general state-space model -- Example of applied analysis in general state-space model.
520
$a
This book provides a comprehensive and concrete illustration of time series analysis focusing on the state-space model, which has recently attracted increasing attention in a broad range of fields. The major feature of the book lies in its consistent Bayesian treatment regarding whole combinations of batch and sequential solutions for linear Gaussian and general state-space models: MCMC and Kalman/particle filter. The reader is given insight on flexible modeling in modern time series analysis. The main topics of the book deal with the state-space model, covering extensively, from introductory and exploratory methods to the latest advanced topics such as real-time structural change detection. Additionally, a practical exercise using R/Stan based on real data promotes understanding and enhances the reader's analytical capability.
650
0
$a
Time-series analysis.
$3
532530
650
0
$a
State-space methods.
$3
643710
650
1 4
$a
Applied Statistics.
$3
3300946
650
2 4
$a
Statistics and Computing/Statistics Programs.
$3
894293
650
2 4
$a
Bayesian Inference.
$3
3386929
650
2 4
$a
Statistical Theory and Methods.
$3
891074
650
2 4
$a
Econometrics.
$3
542934
650
2 4
$a
Macroeconomics/Monetary Economics/Financial Economics.
$3
2179654
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-981-16-0711-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9408672
電子資源
11.線上閱覽_V
電子書
EB QA280 .H34 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入