語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advantages and pitfalls of pattern r...
~
Langer, Horst.
FindBook
Google Book
Amazon
博客來
Advantages and pitfalls of pattern recognition = selected cases in geophysics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advantages and pitfalls of pattern recognition/ Horst Langer, Susanna Falsaperla, Conny Hammer.
其他題名:
selected cases in geophysics /
作者:
Langer, Horst.
其他作者:
Falsaperla, Susanna.
出版者:
San Diego :Elsevier, : 2020.,
面頁冊數:
1 online resource (352 p.)
附註:
4.5.2 Integrated inversion of geophysical data
內容註:
Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Loève transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms
內容註:
1.2.4.5 Discrete wavelet transforms1.2.5 Standardization, normalization, and other preprocessing steps; 1.2.5.1 Comments; 1.2.5.2 Outlier removal; 1.2.5.3 Missing data; 1.2.6 Curse of dimensionality; 1.2.7 Feature selection; Appendix 1 Basic notions on statistics; A1.1 Statistical parameters of an ensemble; A1.2 Distinction of ensembles; 2 -- Supervised learning; 2.1 Introduction; 2.2 Discriminant analysis; 2.2.1 Test ban treaty-some history; 2.2.2 The MS-mb criterion for nuclear test identification; 2.2.3 Linear Discriminant Analysis; 2.3 The linear perceptron
內容註:
2.4 Solving the XOR problem: classification using multilayer perceptrons (MLPs)2.4.1 Nonlinear perceptrons; 2.5 Support vector machines (SVMs); 2.5.1 Linear SVM; 2.5.2 Nonlinear SVM, kernels; 2.6 Hidden Markov Models (HMMs)/sequential data; 2.6.1 Background-from patterns and classes to sequences and processes; 2.6.2 The three problems of HMMs; 2.6.3 Including prior knowledge/model dimensions and topology; 2.6.4 Extension to conditional random fields; 2.7 Bayesian networks; Appendix 2; Appendix 2.1 Fisher's linear discriminant analysis; Appendix 2.2 The perceptron; Backpropagation
內容註:
Appendix 2.3 SVM optimization of the marginsAppendix 2.4. Hidden Markov models; Appendix 2.4.1. Evaluation; Appendix 2.4.2. Decoding-the Viterbi algorithm; Appendix 2.4.3. Training-the expectation-maximization /Baum-Welch algorithm; 3 -- Unsupervised learning; 3.1 Introduction; 3.1.1 Metrics of (dis)similarity; 3.1.2 Clustering; 3.1.2.1 Partitioning clustering; 3.1.2.1.1 Fuzzy clustering; 3.1.2.2 Hierarchical clustering; 3.1.2.3 Density-based clustering; 3.2 Self-Organizing Maps; 3.2.1 Training of an SOM; Appendix 3; Appendix 3.1. Analysis of variance (ANOVA)
內容註:
Appendix 3.2 Minimum distance property for the determinant criterionAppendix 3.3. SOM quality; Topological error; Designing the map; II -- Example applications; 4 -- Applications of supervised learning; 4.1 Introduction; 4.2 Classification of seismic waveforms recorded on volcanoes; 4.2.1 Signal classification of explosion quakes at Stromboli; 4.2.2 Cross-validation issues; 4.3 Infrasound classification; 4.3.1 Infrasound monitoring at Mt Etna-classification with SVM; 4.4 SVM classification of rocks; 4.5 Inversion with MLP; 4.5.1 Identification of parameters governing seismic waveforms
標題:
Geophysics - Data processing. -
電子資源:
https://www.sciencedirect.com/science/book/9780128118429
ISBN:
9780128118436
Advantages and pitfalls of pattern recognition = selected cases in geophysics /
Langer, Horst.
Advantages and pitfalls of pattern recognition
selected cases in geophysics /[electronic resource] :Horst Langer, Susanna Falsaperla, Conny Hammer. - San Diego :Elsevier,2020. - 1 online resource (352 p.) - Computational geophysics series ;v. 3. - Computational geophysics series ;v. 3..
4.5.2 Integrated inversion of geophysical data
Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Loève transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms
ISBN: 9780128118436Subjects--Topical Terms:
3379372
Geophysics
--Data processing.Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QC808.6
Dewey Class. No.: 551.0285
Advantages and pitfalls of pattern recognition = selected cases in geophysics /
LDR
:03910cmm a2200301 a 4500
001
2246467
006
m o d
007
cr un|---aucuu
008
211224s2020 cau o 000 0 eng d
020
$a
9780128118436
020
$a
0128118431
020
$a
9780128118429 (pbk.)
035
$a
on1129171520
040
$a
EBLCP
$b
eng
$e
pn
$c
EBLCP
$d
UKMGB
$d
OCLCO
$d
OPELS
$d
EBLCP
$d
OCLCF
$d
UKAHL
$d
OCLCQ
$d
AU@
$d
OCLCQ
$d
ABC
$d
S2H
041
0
$a
eng
050
4
$a
QC808.6
082
0 4
$a
551.0285
$2
23
100
1
$a
Langer, Horst.
$3
3509904
245
1 0
$a
Advantages and pitfalls of pattern recognition
$h
[electronic resource] :
$b
selected cases in geophysics /
$c
Horst Langer, Susanna Falsaperla, Conny Hammer.
260
$a
San Diego :
$b
Elsevier,
$c
2020.
300
$a
1 online resource (352 p.)
490
1
$a
Computational geophysics series ;
$v
v. 3
500
$a
4.5.2 Integrated inversion of geophysical data
505
0
$a
Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Loève transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms
505
8
$a
1.2.4.5 Discrete wavelet transforms1.2.5 Standardization, normalization, and other preprocessing steps; 1.2.5.1 Comments; 1.2.5.2 Outlier removal; 1.2.5.3 Missing data; 1.2.6 Curse of dimensionality; 1.2.7 Feature selection; Appendix 1 Basic notions on statistics; A1.1 Statistical parameters of an ensemble; A1.2 Distinction of ensembles; 2 -- Supervised learning; 2.1 Introduction; 2.2 Discriminant analysis; 2.2.1 Test ban treaty-some history; 2.2.2 The MS-mb criterion for nuclear test identification; 2.2.3 Linear Discriminant Analysis; 2.3 The linear perceptron
505
8
$a
2.4 Solving the XOR problem: classification using multilayer perceptrons (MLPs)2.4.1 Nonlinear perceptrons; 2.5 Support vector machines (SVMs); 2.5.1 Linear SVM; 2.5.2 Nonlinear SVM, kernels; 2.6 Hidden Markov Models (HMMs)/sequential data; 2.6.1 Background-from patterns and classes to sequences and processes; 2.6.2 The three problems of HMMs; 2.6.3 Including prior knowledge/model dimensions and topology; 2.6.4 Extension to conditional random fields; 2.7 Bayesian networks; Appendix 2; Appendix 2.1 Fisher's linear discriminant analysis; Appendix 2.2 The perceptron; Backpropagation
505
8
$a
Appendix 2.3 SVM optimization of the marginsAppendix 2.4. Hidden Markov models; Appendix 2.4.1. Evaluation; Appendix 2.4.2. Decoding-the Viterbi algorithm; Appendix 2.4.3. Training-the expectation-maximization /Baum-Welch algorithm; 3 -- Unsupervised learning; 3.1 Introduction; 3.1.1 Metrics of (dis)similarity; 3.1.2 Clustering; 3.1.2.1 Partitioning clustering; 3.1.2.1.1 Fuzzy clustering; 3.1.2.2 Hierarchical clustering; 3.1.2.3 Density-based clustering; 3.2 Self-Organizing Maps; 3.2.1 Training of an SOM; Appendix 3; Appendix 3.1. Analysis of variance (ANOVA)
505
8
$a
Appendix 3.2 Minimum distance property for the determinant criterionAppendix 3.3. SOM quality; Topological error; Designing the map; II -- Example applications; 4 -- Applications of supervised learning; 4.1 Introduction; 4.2 Classification of seismic waveforms recorded on volcanoes; 4.2.1 Signal classification of explosion quakes at Stromboli; 4.2.2 Cross-validation issues; 4.3 Infrasound classification; 4.3.1 Infrasound monitoring at Mt Etna-classification with SVM; 4.4 SVM classification of rocks; 4.5 Inversion with MLP; 4.5.1 Identification of parameters governing seismic waveforms
588
0
$a
Print version record.
650
0
$a
Geophysics
$x
Data processing.
$3
3379372
650
0
$a
Pattern perception.
$3
649387
655
0
$a
Electronic books.
$2
lcsh
$3
542853
655
4
$a
Electronic books
$3
959526
700
1
$a
Falsaperla, Susanna.
$3
3509905
700
1
$a
Hammer, Conny.
$3
3509906
830
0
$a
Computational geophysics series ;
$v
v. 3.
$3
3509907
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128118429
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9406893
電子資源
11.線上閱覽_V
電子書
EB QC808.6
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入