Advantages and pitfalls of pattern r...
Langer, Horst.

FindBook      Google Book      Amazon      博客來     
  • Advantages and pitfalls of pattern recognition = selected cases in geophysics /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Advantages and pitfalls of pattern recognition/ Horst Langer, Susanna Falsaperla, Conny Hammer.
    其他題名: selected cases in geophysics /
    作者: Langer, Horst.
    其他作者: Falsaperla, Susanna.
    出版者: San Diego :Elsevier, : 2020.,
    面頁冊數: 1 online resource (352 p.)
    附註: 4.5.2 Integrated inversion of geophysical data
    內容註: Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Loève transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms
    內容註: 1.2.4.5 Discrete wavelet transforms1.2.5 Standardization, normalization, and other preprocessing steps; 1.2.5.1 Comments; 1.2.5.2 Outlier removal; 1.2.5.3 Missing data; 1.2.6 Curse of dimensionality; 1.2.7 Feature selection; Appendix 1 Basic notions on statistics; A1.1 Statistical parameters of an ensemble; A1.2 Distinction of ensembles; 2 -- Supervised learning; 2.1 Introduction; 2.2 Discriminant analysis; 2.2.1 Test ban treaty-some history; 2.2.2 The MS-mb criterion for nuclear test identification; 2.2.3 Linear Discriminant Analysis; 2.3 The linear perceptron
    內容註: 2.4 Solving the XOR problem: classification using multilayer perceptrons (MLPs)2.4.1 Nonlinear perceptrons; 2.5 Support vector machines (SVMs); 2.5.1 Linear SVM; 2.5.2 Nonlinear SVM, kernels; 2.6 Hidden Markov Models (HMMs)/sequential data; 2.6.1 Background-from patterns and classes to sequences and processes; 2.6.2 The three problems of HMMs; 2.6.3 Including prior knowledge/model dimensions and topology; 2.6.4 Extension to conditional random fields; 2.7 Bayesian networks; Appendix 2; Appendix 2.1 Fisher's linear discriminant analysis; Appendix 2.2 The perceptron; Backpropagation
    內容註: Appendix 2.3 SVM optimization of the marginsAppendix 2.4. Hidden Markov models; Appendix 2.4.1. Evaluation; Appendix 2.4.2. Decoding-the Viterbi algorithm; Appendix 2.4.3. Training-the expectation-maximization /Baum-Welch algorithm; 3 -- Unsupervised learning; 3.1 Introduction; 3.1.1 Metrics of (dis)similarity; 3.1.2 Clustering; 3.1.2.1 Partitioning clustering; 3.1.2.1.1 Fuzzy clustering; 3.1.2.2 Hierarchical clustering; 3.1.2.3 Density-based clustering; 3.2 Self-Organizing Maps; 3.2.1 Training of an SOM; Appendix 3; Appendix 3.1. Analysis of variance (ANOVA)
    內容註: Appendix 3.2 Minimum distance property for the determinant criterionAppendix 3.3. SOM quality; Topological error; Designing the map; II -- Example applications; 4 -- Applications of supervised learning; 4.1 Introduction; 4.2 Classification of seismic waveforms recorded on volcanoes; 4.2.1 Signal classification of explosion quakes at Stromboli; 4.2.2 Cross-validation issues; 4.3 Infrasound classification; 4.3.1 Infrasound monitoring at Mt Etna-classification with SVM; 4.4 SVM classification of rocks; 4.5 Inversion with MLP; 4.5.1 Identification of parameters governing seismic waveforms
    標題: Geophysics - Data processing. -
    電子資源: https://www.sciencedirect.com/science/book/9780128118429
    ISBN: 9780128118436
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入