語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Spatial regression analysis using Ei...
~
Griffith, Daniel A.
FindBook
Google Book
Amazon
博客來
Spatial regression analysis using Eigenvector spatial filtering
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Spatial regression analysis using Eigenvector spatial filtering/ Daniel A. Griffith, Yongwan Chun, Bin Li.
作者:
Griffith, Daniel A.
其他作者:
Chun, Yongwan.
出版者:
[Place of publication not identified] :Academic Press, : 2019.,
面頁冊數:
1 online resource
內容註:
Front Cover; Spatial Regression Analysis Using Eigenvector Spatial Filtering; Copyright; Dedication; Contents; Foreword; Moran eigenvector spatial filtering: Multiple origins and convergence; A word about the theoretical background for MESF in ecology; Extensions and the future of MESF analysis; References; Preface; Data description; A preview of the book's content; References; Chapter 1: Spatial autocorrelation; 1.1. Defining SA; 1.1.1. A mathematical formularization of the first law of geography; 1.1.2. Quantifying spatial relationships: The spatial weights matrix
內容註:
1.1.3. Different measurements for different data types: Quantifying SA1.1.4. The MC: Distributional theory; 1.2. Impacts of SA on attribute statistical distributions; 1.2.1. Effects of spatial dependence: Deviating from independent observations; 1.2.2. SA and the Moran scatterplot; 1.2.3. SA and histograms; 1.3. Summary; Appendix 1.A. The mean and variance of the MC for linear regression residuals; References; Chapter 2: An introduction to spectral analysis; 2.1. Representing SA in the spectral domain; 2.1.1. SA: From a spatial frequency to a spatial spectral domain
內容註:
2.1.2. Eigenvalues and eigenvectors2.1.3. Principal components analysis: A reconnaissance; 2.1.4. The spectral decomposition of a modified SWM; 2.1.5. Representing the MC with eigenfunctions; 2.1.6. Visualizing map patterns with eigenvectors; 2.2. The spectral analysis of one-dimensional data; 2.3. The spectral analysis of two-dimensional data; 2.4. The spectral analysis of three-dimensional data; 2.5. Summary; Appendix 2.A. The spectral decomposition of a SWM; References; Chapter 3: MESF and linear regression; 3.1. A theoretical foundation for ESFs; 3.1.1. The fundamental theorem of MESF
內容註:
3.1.2. Map pattern and SA: Heterogeneity in map-wide trends3.2. Estimating an ESF as an OLS problem: An illustrative linear regression example; 3.2.1. The selection of eigenvectors to construct an ESF; 3.2.2. Selected criteria for assessing regression models: The PRESS statistic, residual diagnostics, and multicollinearity; 3.2.3. Interpreting an ESF and its parameter estimates; 3.2.4. Comparisons between ESF and SAR model specification results; 3.3. Simulation experiments based upon ESFs; 3.4. ESF prediction with linear regression; 3.5. Summary; References
內容註:
Chapter 4: Software implementation for constructing an ESF, with special reference to linear regression4.1. Software implementation; 4.2. Geographic scale and resolution issues for ESFs; 4.3. Determining the candidate set of eigenvectors; 4.4. Extensions to large georeferenced datasets: Implications for big spatial data; 4.4.1. A validation demonstration for approximate ESFs; 4.4.2. An exploration of a massively large remotely sensed image; 4.4.3. Correct SWM eigenvectors for a regular square tessellation; 4.5. Summary
標題:
Spatial analysis (Statistics) -
電子資源:
https://www.sciencedirect.com/science/book/9780128150436
ISBN:
9780128156926 (electronic bk.)
Spatial regression analysis using Eigenvector spatial filtering
Griffith, Daniel A.
Spatial regression analysis using Eigenvector spatial filtering
[electronic resource] /Daniel A. Griffith, Yongwan Chun, Bin Li. - [Place of publication not identified] :Academic Press,2019. - 1 online resource
Front Cover; Spatial Regression Analysis Using Eigenvector Spatial Filtering; Copyright; Dedication; Contents; Foreword; Moran eigenvector spatial filtering: Multiple origins and convergence; A word about the theoretical background for MESF in ecology; Extensions and the future of MESF analysis; References; Preface; Data description; A preview of the book's content; References; Chapter 1: Spatial autocorrelation; 1.1. Defining SA; 1.1.1. A mathematical formularization of the first law of geography; 1.1.2. Quantifying spatial relationships: The spatial weights matrix
ISBN: 9780128156926 (electronic bk.)Subjects--Topical Terms:
520421
Spatial analysis (Statistics)
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QA278.2
Dewey Class. No.: 519.536
Spatial regression analysis using Eigenvector spatial filtering
LDR
:03708cmm a2200277 a 4500
001
2246420
006
m o d
007
cr |n|||||||||
008
211224s2019 xx o 000 0 eng d
020
$a
9780128156926 (electronic bk.)
020
$a
0128156929 (electronic bk.)
020
$a
0128150432
020
$a
9780128150436
035
$a
on1121293860
040
$a
YDX
$b
eng
$e
pn
$c
YDX
$d
OPELS
$d
UKMGB
$d
EBLCP
$d
OCLCF
$d
SFB
$d
OCLCQ
$d
N$T
$d
OCLCQ
$d
S2H
041
0
$a
eng
050
4
$a
QA278.2
082
0 4
$a
519.536
$2
23
100
1
$a
Griffith, Daniel A.
$3
533935
245
1 0
$a
Spatial regression analysis using Eigenvector spatial filtering
$h
[electronic resource] /
$c
Daniel A. Griffith, Yongwan Chun, Bin Li.
260
$a
[Place of publication not identified] :
$b
Academic Press,
$c
2019.
300
$a
1 online resource
505
0
$a
Front Cover; Spatial Regression Analysis Using Eigenvector Spatial Filtering; Copyright; Dedication; Contents; Foreword; Moran eigenvector spatial filtering: Multiple origins and convergence; A word about the theoretical background for MESF in ecology; Extensions and the future of MESF analysis; References; Preface; Data description; A preview of the book's content; References; Chapter 1: Spatial autocorrelation; 1.1. Defining SA; 1.1.1. A mathematical formularization of the first law of geography; 1.1.2. Quantifying spatial relationships: The spatial weights matrix
505
8
$a
1.1.3. Different measurements for different data types: Quantifying SA1.1.4. The MC: Distributional theory; 1.2. Impacts of SA on attribute statistical distributions; 1.2.1. Effects of spatial dependence: Deviating from independent observations; 1.2.2. SA and the Moran scatterplot; 1.2.3. SA and histograms; 1.3. Summary; Appendix 1.A. The mean and variance of the MC for linear regression residuals; References; Chapter 2: An introduction to spectral analysis; 2.1. Representing SA in the spectral domain; 2.1.1. SA: From a spatial frequency to a spatial spectral domain
505
8
$a
2.1.2. Eigenvalues and eigenvectors2.1.3. Principal components analysis: A reconnaissance; 2.1.4. The spectral decomposition of a modified SWM; 2.1.5. Representing the MC with eigenfunctions; 2.1.6. Visualizing map patterns with eigenvectors; 2.2. The spectral analysis of one-dimensional data; 2.3. The spectral analysis of two-dimensional data; 2.4. The spectral analysis of three-dimensional data; 2.5. Summary; Appendix 2.A. The spectral decomposition of a SWM; References; Chapter 3: MESF and linear regression; 3.1. A theoretical foundation for ESFs; 3.1.1. The fundamental theorem of MESF
505
8
$a
3.1.2. Map pattern and SA: Heterogeneity in map-wide trends3.2. Estimating an ESF as an OLS problem: An illustrative linear regression example; 3.2.1. The selection of eigenvectors to construct an ESF; 3.2.2. Selected criteria for assessing regression models: The PRESS statistic, residual diagnostics, and multicollinearity; 3.2.3. Interpreting an ESF and its parameter estimates; 3.2.4. Comparisons between ESF and SAR model specification results; 3.3. Simulation experiments based upon ESFs; 3.4. ESF prediction with linear regression; 3.5. Summary; References
505
8
$a
Chapter 4: Software implementation for constructing an ESF, with special reference to linear regression4.1. Software implementation; 4.2. Geographic scale and resolution issues for ESFs; 4.3. Determining the candidate set of eigenvectors; 4.4. Extensions to large georeferenced datasets: Implications for big spatial data; 4.4.1. A validation demonstration for approximate ESFs; 4.4.2. An exploration of a massively large remotely sensed image; 4.4.3. Correct SWM eigenvectors for a regular square tessellation; 4.5. Summary
650
0
$a
Spatial analysis (Statistics)
$3
520421
650
0
$a
Regression analysis.
$3
529831
650
0
$a
Eigenvectors.
$3
836550
655
0
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Chun, Yongwan.
$3
2049439
700
1
$a
Li, Bin.
$3
834070
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128150436
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9406846
電子資源
11.線上閱覽_V
電子書
EB QA278.2
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入