語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Intelligent data analysis for biomed...
~
Hemanth, D. Jude,
FindBook
Google Book
Amazon
博客來
Intelligent data analysis for biomedical applications = challenges and solutions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Intelligent data analysis for biomedical applications/ edited by Jude Hemanth, Deepak Gupta, Valentina Emilia Balas.
其他題名:
challenges and solutions /
其他作者:
Hemanth, D. Jude,
出版者:
London :Academic Press, : 2019.,
面頁冊數:
1 online resource.
內容註:
Front Cover; Intelligent Data Analysis for Biomedical Applications; Copyright Page; Contents; List of Contributors; 1 IoT-Based Intelligent Capsule Endoscopy System: A Technical Review; 1.1 Introduction; 1.2 Data Acquisition; 1.2.1 Image Sensor; 1.2.2 Optical Sensor; 1.2.3 Pressure, Temperature, and pH-Monitoring Sensor; 1.2.4 Other Ingestible Sensors; 1.3 On-Chip Data-Processing Unit; 1.3.1 Image Compression; 1.3.2 Application Specific Integrated Circuit Design; 1.3.3 Radiofrequency Transmission; 1.3.4 Power Management; 1.4 Data Management of Wireless Capsule Endoscopy Systems
內容註:
1.5 IoT-Based Wireless Capsule Endoscopy System1.5.1 Intelligence in the System; 1.5.2 Real-Time Sensing; 1.5.3 Internet of Things Protocol; 1.5.4 Connectivity; 1.5.5 Security; 1.5.6 Improved Outcomes of Treatment; 1.6 Future Challenges; 1.7 Conclusion; References; 2 Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization; 2.1 Introduction; 2.2 Implementation of Ant Colony Optimization Algorithm; 2.2.1 Isula Framework; 2.2.2 Ant Route Construction; 2.2.3 Ant Pheromone Update; 2.3 Image Segmentation Techniques; 2.3.1 Threshold-Based Segmentation
內容註:
2.3.1.1 Otsu' Algorithm2.3.1.2 Ant Colony Optimization-Based Multilevel Thresholds Selection; 2.3.1.3 Algorithm for Ant Colony Optimization; 2.3.2 Edge-Based Segmentation; 2.3.2.1 Ant Colony Optimization-Based Edge Detection Initialization; 2.3.2.2 Ant Colony Optimization-Based Structuring Process; 2.3.2.3 Ant Colony Optimization-Based Updating Process; 2.3.2.4 Decision Process; 2.4 Evaluation of Segmentation Techniques; 2.4.1 Mean-Square Error; 2.4.2 Root-Mean-Square-Error; 2.4.3 Signal-to-Noise Ratio; 2.4.4 Peak Signal-to-Noise Ratio; 2.5 Experiments and Results
內容註:
2.5.1 Ant Colony Optimization-Image-Segmentation Using the Isula Framework2.5.2 Performance Testing Ant Colony Optimization Image Segmentation Algorithm; 2.5.3 Application of Ant Colony Optimization on Segmentation of Brain MRI; 2.5.4 Ant Colony Optimization-Image Segmentation on Iris Images; 2.5.5 Comparison of Results; 2.6 Conclusion; References; Further Reading; 3 A Feature Fusion-Based Discriminant Learning Model for Diagnosis of Neuromuscular Disorders Using Single-Channel Needle E ... ; 3.1 Introduction; 3.2 State-of-Art-Methods; 3.3 Theoretical Modeling of Learning from Big Data
內容註:
3.3.1 Strategy Statement3.3.2 Discriminant Feature Fusion Framework; 3.3.3 Generalized Multidomain Learning; 3.4 Medical Measurements and Data Analysis; 3.4.1 Electromyogram Signal Recording Setup; 3.4.2 Electromyogram Datasets; 3.5Results and Discussion; 3.5.1 Correlation Analysis; 3.5.2 Performance Investigation of Discriminant Learning Scheme; 3.5.3 Comparative Study; 3.6 Conclusion; References; Further Reading; 4 Evolution of Consciousness Systems With Bacterial Behaviour; 4.1 Introduction; 4.2 Proposal; 4.2.1 Working Assumptions?; 4.2.2 Real Life Assumptions; 4.2.3 Consciousness Theory
標題:
Bioinformatics. -
電子資源:
https://www.sciencedirect.com/science/book/9780128155530
ISBN:
9780128156438 (electronic bk.)
Intelligent data analysis for biomedical applications = challenges and solutions /
Intelligent data analysis for biomedical applications
challenges and solutions /[electronic resource] :edited by Jude Hemanth, Deepak Gupta, Valentina Emilia Balas. - London :Academic Press,2019. - 1 online resource. - Intelligent data centric systems. - Intelligent data centric systems..
Includes bibliographical references and index.
Front Cover; Intelligent Data Analysis for Biomedical Applications; Copyright Page; Contents; List of Contributors; 1 IoT-Based Intelligent Capsule Endoscopy System: A Technical Review; 1.1 Introduction; 1.2 Data Acquisition; 1.2.1 Image Sensor; 1.2.2 Optical Sensor; 1.2.3 Pressure, Temperature, and pH-Monitoring Sensor; 1.2.4 Other Ingestible Sensors; 1.3 On-Chip Data-Processing Unit; 1.3.1 Image Compression; 1.3.2 Application Specific Integrated Circuit Design; 1.3.3 Radiofrequency Transmission; 1.3.4 Power Management; 1.4 Data Management of Wireless Capsule Endoscopy Systems
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discoveryof mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases.
ISBN: 9780128156438 (electronic bk.)Subjects--Topical Terms:
553671
Bioinformatics.
Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: QH324.2
Dewey Class. No.: 005.7
Intelligent data analysis for biomedical applications = challenges and solutions /
LDR
:04796cmm a2200325 a 4500
001
2246133
006
m o d
007
cr cnu---unuuu
008
211223s2019 enka gob 001 0 eng d
020
$a
9780128156438 (electronic bk.)
020
$a
0128156430 (electronic bk.)
020
$a
9780128155530
020
$a
0128155531
035
$a
(OCoLC)1090301530
035
$a
on1090301530
040
$a
N$T
$b
eng
$c
N$T
$d
N$T
$d
OPELS
$d
EBLCP
$d
UKMGB
$d
YDX
$d
UKAHL
$d
OCLCF
$d
OCLCQ
$d
UMI
$d
OCLCQ
$d
S2H
$d
OCLCO
$d
ERF
$d
OCLCO
$d
LVT
$d
OCLCA
041
0
$a
eng
050
4
$a
QH324.2
082
0 4
$a
005.7
$2
23
245
0 0
$a
Intelligent data analysis for biomedical applications
$h
[electronic resource] :
$b
challenges and solutions /
$c
edited by Jude Hemanth, Deepak Gupta, Valentina Emilia Balas.
260
$a
London :
$b
Academic Press,
$c
2019.
300
$a
1 online resource.
490
1
$a
Intelligent data centric systems
504
$a
Includes bibliographical references and index.
505
0
$a
Front Cover; Intelligent Data Analysis for Biomedical Applications; Copyright Page; Contents; List of Contributors; 1 IoT-Based Intelligent Capsule Endoscopy System: A Technical Review; 1.1 Introduction; 1.2 Data Acquisition; 1.2.1 Image Sensor; 1.2.2 Optical Sensor; 1.2.3 Pressure, Temperature, and pH-Monitoring Sensor; 1.2.4 Other Ingestible Sensors; 1.3 On-Chip Data-Processing Unit; 1.3.1 Image Compression; 1.3.2 Application Specific Integrated Circuit Design; 1.3.3 Radiofrequency Transmission; 1.3.4 Power Management; 1.4 Data Management of Wireless Capsule Endoscopy Systems
505
8
$a
1.5 IoT-Based Wireless Capsule Endoscopy System1.5.1 Intelligence in the System; 1.5.2 Real-Time Sensing; 1.5.3 Internet of Things Protocol; 1.5.4 Connectivity; 1.5.5 Security; 1.5.6 Improved Outcomes of Treatment; 1.6 Future Challenges; 1.7 Conclusion; References; 2 Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization; 2.1 Introduction; 2.2 Implementation of Ant Colony Optimization Algorithm; 2.2.1 Isula Framework; 2.2.2 Ant Route Construction; 2.2.3 Ant Pheromone Update; 2.3 Image Segmentation Techniques; 2.3.1 Threshold-Based Segmentation
505
8
$a
2.3.1.1 Otsu' Algorithm2.3.1.2 Ant Colony Optimization-Based Multilevel Thresholds Selection; 2.3.1.3 Algorithm for Ant Colony Optimization; 2.3.2 Edge-Based Segmentation; 2.3.2.1 Ant Colony Optimization-Based Edge Detection Initialization; 2.3.2.2 Ant Colony Optimization-Based Structuring Process; 2.3.2.3 Ant Colony Optimization-Based Updating Process; 2.3.2.4 Decision Process; 2.4 Evaluation of Segmentation Techniques; 2.4.1 Mean-Square Error; 2.4.2 Root-Mean-Square-Error; 2.4.3 Signal-to-Noise Ratio; 2.4.4 Peak Signal-to-Noise Ratio; 2.5 Experiments and Results
505
8
$a
2.5.1 Ant Colony Optimization-Image-Segmentation Using the Isula Framework2.5.2 Performance Testing Ant Colony Optimization Image Segmentation Algorithm; 2.5.3 Application of Ant Colony Optimization on Segmentation of Brain MRI; 2.5.4 Ant Colony Optimization-Image Segmentation on Iris Images; 2.5.5 Comparison of Results; 2.6 Conclusion; References; Further Reading; 3 A Feature Fusion-Based Discriminant Learning Model for Diagnosis of Neuromuscular Disorders Using Single-Channel Needle E ... ; 3.1 Introduction; 3.2 State-of-Art-Methods; 3.3 Theoretical Modeling of Learning from Big Data
505
8
$a
3.3.1 Strategy Statement3.3.2 Discriminant Feature Fusion Framework; 3.3.3 Generalized Multidomain Learning; 3.4 Medical Measurements and Data Analysis; 3.4.1 Electromyogram Signal Recording Setup; 3.4.2 Electromyogram Datasets; 3.5Results and Discussion; 3.5.1 Correlation Analysis; 3.5.2 Performance Investigation of Discriminant Learning Scheme; 3.5.3 Comparative Study; 3.6 Conclusion; References; Further Reading; 4 Evolution of Consciousness Systems With Bacterial Behaviour; 4.1 Introduction; 4.2 Proposal; 4.2.1 Working Assumptions?; 4.2.2 Real Life Assumptions; 4.2.3 Consciousness Theory
520
$a
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discoveryof mechanisms that create data. It provides computational methods and tools for intelligent data analysis, with an emphasis on problem-solving relating to automated data collection, such as computer-based patient records, data warehousing tools, intelligent alarming, effective and efficient monitoring, and more. This book provides useful references for educational institutions, industry professionals, researchers, scientists, engineers and practitioners interested in intelligent data analysis, knowledge discovery, and decision support in databases.
650
0
$a
Bioinformatics.
$3
553671
650
0
$a
Medical sciences
$x
Data processing.
$3
3509196
650
0
$a
Data mining.
$3
562972
650
0
$a
Big data.
$3
2045508
650
1 2
$a
Computational Biology.
$3
736565
650
1 2
$a
Medicine.
$3
641104
650
7
$a
COMPUTERS
$x
Bioinformatics.
$2
bisacsh
$3
3509197
655
0
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Hemanth, D. Jude,
$e
editor.
$3
3324495
700
1
$a
Gupta, Deepak,
$d
active 2015-2016,
$e
editor.
$3
3509195
700
1
$a
Balas, Valentina Emilia,
$e
editor.
$3
3395950
830
0
$a
Intelligent data centric systems.
$3
3235783
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128155530
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9406628
電子資源
11.線上閱覽_V
電子書
EB QH324.2
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入