語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Representation learning = propositio...
~
Lavrac, Nada.
FindBook
Google Book
Amazon
博客來
Representation learning = propositionalization and embeddings /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Representation learning/ by Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja.
其他題名:
propositionalization and embeddings /
作者:
Lavrac, Nada.
其他作者:
Podpecan, Vid.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xvi, 163 p. :ill., digital ;24 cm.
內容註:
Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
Contained By:
Springer Nature eBook
標題:
Machine learning. -
電子資源:
https://doi.org/10.1007/978-3-030-68817-2
ISBN:
9783030688172
Representation learning = propositionalization and embeddings /
Lavrac, Nada.
Representation learning
propositionalization and embeddings /[electronic resource] :by Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja. - Cham :Springer International Publishing :2021. - xvi, 163 p. :ill., digital ;24 cm.
Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
ISBN: 9783030688172
Standard No.: 10.1007/978-3-030-68817-2doiSubjects--Topical Terms:
533906
Machine learning.
LC Class. No.: Q325.5
Dewey Class. No.: 006.31
Representation learning = propositionalization and embeddings /
LDR
:02426nmm a2200337 a 4500
001
2244870
003
DE-He213
005
20210710054444.0
006
m d
007
cr nn 008maaau
008
211207s2021 sz s 0 eng d
020
$a
9783030688172
$q
(electronic bk.)
020
$a
9783030688165
$q
(paper)
024
7
$a
10.1007/978-3-030-68817-2
$2
doi
035
$a
978-3-030-68817-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q325.5
072
7
$a
UNF
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
072
7
$a
UNF
$2
thema
072
7
$a
UYQE
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
Q325.5
$b
.L414 2021
100
1
$a
Lavrac, Nada.
$3
667725
245
1 0
$a
Representation learning
$h
[electronic resource] :
$b
propositionalization and embeddings /
$c
by Nada Lavrac, Vid Podpecan, Marko Robnik-Sikonja.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvi, 163 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Introduction to Representation Learning -- Machine Learning Background -- Text Embeddings -- Propositionalization of Relational Data -- Graph and Heterogeneous Network Transformations -- Unified Representation Learning Approaches -- Many Faces of Representation Learning.
520
$a
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Data Mining and Knowledge Discovery.
$3
898250
650
2 4
$a
Data Structures.
$3
891009
650
2 4
$a
Numerical Analysis.
$3
892626
700
1
$a
Podpecan, Vid.
$3
3506178
700
1
$a
Robnik-Sikonja, Marko.
$3
3506179
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-68817-2
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9405916
電子資源
11.線上閱覽_V
電子書
EB Q325.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入