語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learn PySpark = build Python-based m...
~
Singh, Pramod.
FindBook
Google Book
Amazon
博客來
Learn PySpark = build Python-based machine learning and deep learning models /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Learn PySpark/ by Pramod Singh.
其他題名:
build Python-based machine learning and deep learning models /
作者:
Singh, Pramod.
出版者:
Berkeley, CA :Apress : : 2019.,
面頁冊數:
xviii, 210 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter 1: Introduction to PySpark -- Chapter 2: Data Processing -- Chapter 3: Spark Structured Streaming -- Chapter 4: Airflow -- Chapter 5: Machine Learning Library (MLlib) -- Chapter 6: Supervised Machine Learning -- Chapter 7: Unsupervised Machine Learning -- Chapter 8: Deep Learning Using PySpark.
Contained By:
Springer Nature eBook
標題:
SPARK (Computer program language) -
電子資源:
https://doi.org/10.1007/978-1-4842-4961-1
ISBN:
9781484249611
Learn PySpark = build Python-based machine learning and deep learning models /
Singh, Pramod.
Learn PySpark
build Python-based machine learning and deep learning models /[electronic resource] :by Pramod Singh. - Berkeley, CA :Apress :2019. - xviii, 210 p. :ill. (some col.), digital ;24 cm.
Chapter 1: Introduction to PySpark -- Chapter 2: Data Processing -- Chapter 3: Spark Structured Streaming -- Chapter 4: Airflow -- Chapter 5: Machine Learning Library (MLlib) -- Chapter 6: Supervised Machine Learning -- Chapter 7: Unsupervised Machine Learning -- Chapter 8: Deep Learning Using PySpark.
Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.
ISBN: 9781484249611
Standard No.: 10.1007/978-1-4842-4961-1doiSubjects--Topical Terms:
3300294
SPARK (Computer program language)
LC Class. No.: QA76.73.S59 / S56 2019
Dewey Class. No.: 006.31
Learn PySpark = build Python-based machine learning and deep learning models /
LDR
:02284nmm a2200325 a 4500
001
2243307
003
DE-He213
005
20200703081822.0
006
m d
007
cr nn 008maaau
008
211207s2019 cau s 0 eng d
020
$a
9781484249611
$q
(electronic bk.)
020
$a
9781484249604
$q
(paper)
024
7
$a
10.1007/978-1-4842-4961-1
$2
doi
035
$a
978-1-4842-4961-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.73.S59
$b
S56 2019
072
7
$a
UMX
$2
bicssc
072
7
$a
COM051360
$2
bisacsh
072
7
$a
UMX
$2
thema
082
0 4
$a
006.31
$2
23
090
$a
QA76.73.S59
$b
S617 2019
100
1
$a
Singh, Pramod.
$3
3384003
245
1 0
$a
Learn PySpark
$h
[electronic resource] :
$b
build Python-based machine learning and deep learning models /
$c
by Pramod Singh.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2019.
300
$a
xviii, 210 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Chapter 1: Introduction to PySpark -- Chapter 2: Data Processing -- Chapter 3: Spark Structured Streaming -- Chapter 4: Airflow -- Chapter 5: Machine Learning Library (MLlib) -- Chapter 6: Supervised Machine Learning -- Chapter 7: Unsupervised Machine Learning -- Chapter 8: Deep Learning Using PySpark.
520
$a
Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges. You'll start by reviewing PySpark fundamentals, such as Spark's core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms. You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.
650
0
$a
SPARK (Computer program language)
$3
3300294
650
0
$a
Python (Computer program language)
$3
729789
650
0
$a
Machine learning.
$3
533906
650
1 4
$a
Python.
$3
3201289
650
2 4
$a
Big Data.
$3
3134868
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Open Source.
$3
2210577
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-1-4842-4961-1
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9404353
電子資源
11.線上閱覽_V
電子書
EB QA76.73.S59 S56 2019
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入