語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lectures on optimal transport
~
Ambrosio, Luigi.
FindBook
Google Book
Amazon
博客來
Lectures on optimal transport
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Lectures on optimal transport/ by Luigi Ambrosio, Elia Brue, Daniele Semola.
作者:
Ambrosio, Luigi.
其他作者:
Brue, Elia.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
ix, 250 p. :ill., digital ;24 cm.
內容註:
1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampere equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brezis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto's calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
Contained By:
Springer Nature eBook
標題:
Mathematical optimization. -
電子資源:
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-72162-6
ISBN:
9783030721626
Lectures on optimal transport
Ambrosio, Luigi.
Lectures on optimal transport
[electronic resource] /by Luigi Ambrosio, Elia Brue, Daniele Semola. - Cham :Springer International Publishing :2021. - ix, 250 p. :ill., digital ;24 cm. - Unitext. La matematica per il 3+2 ;v.130. - Unitext.La matematica per il 3+2 ;v.130..
1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampere equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brezis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto's calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.
ISBN: 9783030721626
Standard No.: 10.1007/978-3-030-72162-6doiSubjects--Topical Terms:
517763
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Lectures on optimal transport
LDR
:03047nmm a2200337 a 4500
001
2242312
003
DE-He213
005
20210722203231.0
006
m d
007
cr nn 008maaau
008
211207s2021 sz s 0 eng d
020
$a
9783030721626
$q
(electronic bk.)
020
$a
9783030721619
$q
(paper)
024
7
$a
10.1007/978-3-030-72162-6
$2
doi
035
$a
978-3-030-72162-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
072
7
$a
PBK
$2
thema
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.A496 2021
100
1
$a
Ambrosio, Luigi.
$3
606430
245
1 0
$a
Lectures on optimal transport
$h
[electronic resource] /
$c
by Luigi Ambrosio, Elia Brue, Daniele Semola.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
ix, 250 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Unitext. La matematica per il 3+2 ;
$v
v.130
505
0
$a
1 Lecture 1: Preliminary notions and the Monge problem -- 2 Lecture 2: The Kantorovich problem -- 3 Lecture 3: The Kantorovich - Rubinstein duality -- 4 Lecture 4: Necessary and sufficient optimality conditions -- 5 Lecture 5: Existence of optimal maps and applications -- 6 Lecture 6: A proof of the Isoperimetric inequality and stability in Optimal Transport -- 7 Lecture 7: The Monge-Ampere equation and Optimal Transport on Riemannian manifolds -- 8 Lecture 8: The metric side of Optimal Transport -- 9 Lecture 9: Analysis on metric spaces and the dynamic formulation of Optimal Transport -- 10 Lecture 10: Wasserstein geodesics, nonbranching and curvature -- 11 Lecture 11: Gradient flows: an introduction -- 12 Lecture 12: Gradient flows: the Brezis-Komura theorem -- 13 Lecture 13: Examples of gradient flows in PDEs -- 14 Lecture 14: Gradient flows: the EDE and EDI formulations -- 15 Lecture 15: Semicontinuity and convexity of energies in the Wasserstein space -- 16 Lecture 16: The Continuity Equation and the Hopf-Lax semigroup -- 17 Lecture 17: The Benamou-Brenier formula -- 18 Lecture 18: An introduction to Otto's calculus -- 19 Lecture 19: Heat flow, Optimal Transport and Ricci curvature.
520
$a
This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.
650
0
$a
Mathematical optimization.
$3
517763
650
1 4
$a
Analysis.
$3
891106
650
2 4
$a
Optimization.
$3
891104
650
2 4
$a
Measure and Integration.
$3
891263
700
1
$a
Brue, Elia.
$3
3501372
700
1
$a
Semola, Daniele.
$3
3501373
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Unitext.
$p
La matematica per il 3+2 ;
$v
v.130.
$3
3501374
856
4 0
$u
https://link.springer.com/openurl.asp?genre=book&isbn=978-3-030-72162-6
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9403367
電子資源
11.線上閱覽_V
電子書
EB QA402.5
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入