語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Handbook of big geospatial data
~
Werner, Martin.
FindBook
Google Book
Amazon
博客來
Handbook of big geospatial data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Handbook of big geospatial data/ edited by Martin Werner, Yao-Yi Chiang.
其他作者:
Werner, Martin.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xi, 641 p. :ill., digital ;24 cm.
內容註:
I Introduction -- II Spatial Big Data Platforms & Infrastructures -- III Spatial Data Acquisition -- IV Indexing and Retrieval of Spatial Big Data -- V Scalable Algorithms for Spatial Analytics -- VI Data Mining, Machine Learning and Artificial Intelligence -- VII Visualization & Interaction -- VIII Applications.
Contained By:
Springer Nature eBook
標題:
Geospatial data - Handbooks, manuals, etc. - Computer processing -
電子資源:
https://doi.org/10.1007/978-3-030-55462-0
ISBN:
9783030554620
Handbook of big geospatial data
Handbook of big geospatial data
[electronic resource] /edited by Martin Werner, Yao-Yi Chiang. - Cham :Springer International Publishing :2021. - xi, 641 p. :ill., digital ;24 cm.
I Introduction -- II Spatial Big Data Platforms & Infrastructures -- III Spatial Data Acquisition -- IV Indexing and Retrieval of Spatial Big Data -- V Scalable Algorithms for Spatial Analytics -- VI Data Mining, Machine Learning and Artificial Intelligence -- VII Visualization & Interaction -- VIII Applications.
This handbook covers a wide range of topics related to the collection, processing, analysis, and use of geospatial data in their various forms. This handbook provides an overview of how spatial computing technologies for big data can be organized and implemented to solve real-world problems. Diverse subdomains ranging from indoor mapping and navigation over trajectory computing to earth observation from space, are also present in this handbook. It combines fundamental contributions focusing on spatio-textual analysis, uncertain databases, and spatial statistics with application examples such as road network detection or colocation detection using GPUs. In summary, this handbook gives an essential introduction and overview of the rich field of spatial information science and big geospatial data. It introduces three different perspectives, which together define the field of big geospatial data: a societal, governmental, and governance perspective. It discusses questions of how the acquisition, distribution and exploitation of big geospatial data must be organized both on the scale of companies and countries. A second perspective is a theory-oriented set of contributions on arbitrary spatial data with contributions introducing into the exciting field of spatial statistics or into uncertain databases. A third perspective is taking a very practical perspective to big geospatial data, ranging from chapters that describe how big geospatial data infrastructures can be implemented and how specific applications can be implemented on top of big geospatial data. This would include for example, research in historic map data, road network extraction, damage estimation from remote sensing imagery, or the analysis of spatio-textual collections and social media. This multi-disciplinary approach makes the book unique. This handbook can be used as a reference for undergraduate students, graduate students and researchers focused on big geospatial data. Professionals can use this book, as well as practitioners facing big collections of geospatial data.
ISBN: 9783030554620
Standard No.: 10.1007/978-3-030-55462-0doiSubjects--Topical Terms:
3496134
Geospatial data
--Computer processing--Handbooks, manuals, etc.
LC Class. No.: G70.217.G46 / H35 2021
Dewey Class. No.: 910.285
Handbook of big geospatial data
LDR
:03366nmm a2200325 a 4500
001
2240827
003
DE-He213
005
20210507095038.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030554620
$q
(electronic bk.)
020
$a
9783030554613
$q
(paper)
024
7
$a
10.1007/978-3-030-55462-0
$2
doi
035
$a
978-3-030-55462-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
G70.217.G46
$b
H35 2021
072
7
$a
UN
$2
bicssc
072
7
$a
COM021000
$2
bisacsh
072
7
$a
UN
$2
thema
082
0 4
$a
910.285
$2
23
090
$a
G70.217.G46
$b
H236 2021
245
0 0
$a
Handbook of big geospatial data
$h
[electronic resource] /
$c
edited by Martin Werner, Yao-Yi Chiang.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xi, 641 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
I Introduction -- II Spatial Big Data Platforms & Infrastructures -- III Spatial Data Acquisition -- IV Indexing and Retrieval of Spatial Big Data -- V Scalable Algorithms for Spatial Analytics -- VI Data Mining, Machine Learning and Artificial Intelligence -- VII Visualization & Interaction -- VIII Applications.
520
$a
This handbook covers a wide range of topics related to the collection, processing, analysis, and use of geospatial data in their various forms. This handbook provides an overview of how spatial computing technologies for big data can be organized and implemented to solve real-world problems. Diverse subdomains ranging from indoor mapping and navigation over trajectory computing to earth observation from space, are also present in this handbook. It combines fundamental contributions focusing on spatio-textual analysis, uncertain databases, and spatial statistics with application examples such as road network detection or colocation detection using GPUs. In summary, this handbook gives an essential introduction and overview of the rich field of spatial information science and big geospatial data. It introduces three different perspectives, which together define the field of big geospatial data: a societal, governmental, and governance perspective. It discusses questions of how the acquisition, distribution and exploitation of big geospatial data must be organized both on the scale of companies and countries. A second perspective is a theory-oriented set of contributions on arbitrary spatial data with contributions introducing into the exciting field of spatial statistics or into uncertain databases. A third perspective is taking a very practical perspective to big geospatial data, ranging from chapters that describe how big geospatial data infrastructures can be implemented and how specific applications can be implemented on top of big geospatial data. This would include for example, research in historic map data, road network extraction, damage estimation from remote sensing imagery, or the analysis of spatio-textual collections and social media. This multi-disciplinary approach makes the book unique. This handbook can be used as a reference for undergraduate students, graduate students and researchers focused on big geospatial data. Professionals can use this book, as well as practitioners facing big collections of geospatial data.
650
0
$a
Geospatial data
$x
Computer processing
$v
Handbooks, manuals, etc.
$3
3496134
650
0
$a
Big data
$v
Handbooks, manuals, etc.
$3
3221299
650
1 4
$a
Big Data.
$3
3134868
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Regional/Spatial Science.
$3
1001622
650
2 4
$a
Computer Applications.
$3
891249
650
2 4
$a
Geography, general.
$3
2162156
700
1
$a
Werner, Martin.
$3
2111479
700
1
$a
Chiang, Yao-Yi.
$3
3445161
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-3-030-55462-0
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9402712
電子資源
11.線上閱覽_V
電子書
EB G70.217.G46 H35 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入