語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Water in biomechanical and related s...
~
Gadomski, Adam.
FindBook
Google Book
Amazon
博客來
Water in biomechanical and related systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Water in biomechanical and related systems/ edited by Adam Gadomski.
其他作者:
Gadomski, Adam.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
viii, 334 p. :ill. (some col.), digital ;24 cm.
內容註:
Chapter1. Current overview on the role of water in biomechanical and related systems -- Chapter2. Sense and nonsense about water -- Chapter3. Water nanoclusters in cosmology, astrobiology, the RNA world and biomedicine: the universe as a biosystem -- Chapter4. Solvent induced effects on protein folding -- Chapter5 Analysis of protein intramolecular and solvent bonding on example of major sonovital fluid component -- Chapter6. Water behavior near the lipid bilayer -- Chapter7. Water molecules organization surrounding ions, amphiphilic protein residues, and hyaluronan -- Chapter8. Pathological water science - four examples and what they have in common -- Chapter9. Powdery mildew fungus erysiphe alphitoides turns oak leaf surface to the higly hydrophobic state -- Chapter10. Physics of suction cups in air and in water -- Chapter 11. Water transport through synthetic membranes as inspired by transport through biological membranes -- Chapter 12. Travelling waves connected to blood flow and motion of arterial walls -- Chapter 13. Fractal properties of flocs, fitration cakes and biofilms in water and wastewater treatment process -- Chapter 14. Soil hydrology -- Chapter 15. External solicitations, pollution and patterns of water stock: remarks and some modeling proposals -- Chapter 16. Water on livestock: biological role and global perspective on water demand and supply chains.
Contained By:
Springer Nature eBook
標題:
Water. -
電子資源:
https://doi.org/10.1007/978-3-030-67227-0
ISBN:
9783030672270
Water in biomechanical and related systems
Water in biomechanical and related systems
[electronic resource] /edited by Adam Gadomski. - Cham :Springer International Publishing :2021. - viii, 334 p. :ill. (some col.), digital ;24 cm. - Biologically-inspired systems,v.172211-0593 ;. - Biologically-inspired systems ;v.17..
Chapter1. Current overview on the role of water in biomechanical and related systems -- Chapter2. Sense and nonsense about water -- Chapter3. Water nanoclusters in cosmology, astrobiology, the RNA world and biomedicine: the universe as a biosystem -- Chapter4. Solvent induced effects on protein folding -- Chapter5 Analysis of protein intramolecular and solvent bonding on example of major sonovital fluid component -- Chapter6. Water behavior near the lipid bilayer -- Chapter7. Water molecules organization surrounding ions, amphiphilic protein residues, and hyaluronan -- Chapter8. Pathological water science - four examples and what they have in common -- Chapter9. Powdery mildew fungus erysiphe alphitoides turns oak leaf surface to the higly hydrophobic state -- Chapter10. Physics of suction cups in air and in water -- Chapter 11. Water transport through synthetic membranes as inspired by transport through biological membranes -- Chapter 12. Travelling waves connected to blood flow and motion of arterial walls -- Chapter 13. Fractal properties of flocs, fitration cakes and biofilms in water and wastewater treatment process -- Chapter 14. Soil hydrology -- Chapter 15. External solicitations, pollution and patterns of water stock: remarks and some modeling proposals -- Chapter 16. Water on livestock: biological role and global perspective on water demand and supply chains.
The contributed volume puts emphasis on a superior role of water in (bio)systems exposed to a mechanical stimulus. It is well known that water plays an extraordinary role in our life. It feeds mammalian or other organism after distributing over its whole volume to support certain physiological and locomotive (friction-adhesion) processes to mention but two of them, both of extreme relevance. Water content, not only in the mammalian organism but also in other biosystems such as whether those of soil which is equipped with microbiome or the ones pertinent to plants, having their own natural network of water vessels, is always subjected to a force field. The decisive force field applied to the biosystems makes them biomechanically agitated irrespective of whether they are subjected to external or internal force-field conditions. It ought to be noted that the decisive mechanical factor shows up in a close relation with the space-and-time scale in which it is causing certain specific phenomena to occur. The scale problem, emphasizing the range of action of gravitational force, thus the millimeter or bigger force vs. distance scale, is supposed to enter the so-called macroscale approach to water transportation through soil or plants' roots system. It is merely related to a percolation problem, which assumes to properly inspect the random network architecture assigned to the biosystems invoked. The capillarity conditions turn out to be of prior importance, and the porous-medium effect has to be treated, and solved in a fairly approximate way. The deeper the scale is penetrated by a force-exerting and hydrated agent the more non-gravitational force fields manifest. This can be envisaged in terms of the corresponding thermodynamic (non-Newtonian) forces, and the phenomena of interest are mostly attributed to suitable changes of the osmotic pressure. In low Reynolds number conditions, thus in the (sub)micrometer distance-scale zone, they are related with the corresponding viscosity changes of the aqueous, e.g. cytoplasmatic solutions, of semi-diluted and concentrated (but also electrolytic) characteristics. For example, they can be observed in articulating systems of mammals, in their skin, and to some extent, in other living beings, such as lizards, geckos or even insects. Through their articulating devices an external mechanical stimulus is transmitted from macro- to nanoscale, wherein the corresponding osmotic-pressure conditions apply. The content of the proposed work can be distributed twofold. First, the biomechanical mammalian-type (or, similar) systems with extraordinary relevance of water for their functioning will be presented, also including a presentation of water itself as a key physicochemical system/medium. Second, the suitably chosen related systems, mainly of soil and plant addressing provenience, will be examined thoroughly. As a common denominator of all of them, it is proposed to look at their hydrophobic and/or (de)hydration effects, and how do they impact on their basic mechanical (and related, such as chemo-mechanical or piezoelectric, etc.) properties. An additional tacit assumption employed throughout the monograph concerns statistical scalability of the presented biosystems which is equivalent to take for granted a certain similarity between local and global system's properties, mostly those of mechanical nature. The presented work's chapters also focus on biodiversity and ecological aspects in the world of animals and plants, and the related systems. The chapters' contents underscore the bioinspiration as the key landmark of the proposed monograph.
ISBN: 9783030672270
Standard No.: 10.1007/978-3-030-67227-0doiSubjects--Topical Terms:
516619
Water.
LC Class. No.: QD169.W3 / W384 2021
Dewey Class. No.: 546.22
Water in biomechanical and related systems
LDR
:06081nmm a2200337 a 4500
001
2239579
003
DE-He213
005
20210722165305.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030672270
$q
(electronic bk.)
020
$a
9783030672263
$q
(paper)
024
7
$a
10.1007/978-3-030-67227-0
$2
doi
035
$a
978-3-030-67227-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QD169.W3
$b
W384 2021
072
7
$a
PSA
$2
bicssc
072
7
$a
SCI086000
$2
bisacsh
072
7
$a
PSA
$2
thema
082
0 4
$a
546.22
$2
23
090
$a
QD169.W3
$b
W324 2021
245
0 0
$a
Water in biomechanical and related systems
$h
[electronic resource] /
$c
edited by Adam Gadomski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
viii, 334 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Biologically-inspired systems,
$x
2211-0593 ;
$v
v.17
505
0
$a
Chapter1. Current overview on the role of water in biomechanical and related systems -- Chapter2. Sense and nonsense about water -- Chapter3. Water nanoclusters in cosmology, astrobiology, the RNA world and biomedicine: the universe as a biosystem -- Chapter4. Solvent induced effects on protein folding -- Chapter5 Analysis of protein intramolecular and solvent bonding on example of major sonovital fluid component -- Chapter6. Water behavior near the lipid bilayer -- Chapter7. Water molecules organization surrounding ions, amphiphilic protein residues, and hyaluronan -- Chapter8. Pathological water science - four examples and what they have in common -- Chapter9. Powdery mildew fungus erysiphe alphitoides turns oak leaf surface to the higly hydrophobic state -- Chapter10. Physics of suction cups in air and in water -- Chapter 11. Water transport through synthetic membranes as inspired by transport through biological membranes -- Chapter 12. Travelling waves connected to blood flow and motion of arterial walls -- Chapter 13. Fractal properties of flocs, fitration cakes and biofilms in water and wastewater treatment process -- Chapter 14. Soil hydrology -- Chapter 15. External solicitations, pollution and patterns of water stock: remarks and some modeling proposals -- Chapter 16. Water on livestock: biological role and global perspective on water demand and supply chains.
520
$a
The contributed volume puts emphasis on a superior role of water in (bio)systems exposed to a mechanical stimulus. It is well known that water plays an extraordinary role in our life. It feeds mammalian or other organism after distributing over its whole volume to support certain physiological and locomotive (friction-adhesion) processes to mention but two of them, both of extreme relevance. Water content, not only in the mammalian organism but also in other biosystems such as whether those of soil which is equipped with microbiome or the ones pertinent to plants, having their own natural network of water vessels, is always subjected to a force field. The decisive force field applied to the biosystems makes them biomechanically agitated irrespective of whether they are subjected to external or internal force-field conditions. It ought to be noted that the decisive mechanical factor shows up in a close relation with the space-and-time scale in which it is causing certain specific phenomena to occur. The scale problem, emphasizing the range of action of gravitational force, thus the millimeter or bigger force vs. distance scale, is supposed to enter the so-called macroscale approach to water transportation through soil or plants' roots system. It is merely related to a percolation problem, which assumes to properly inspect the random network architecture assigned to the biosystems invoked. The capillarity conditions turn out to be of prior importance, and the porous-medium effect has to be treated, and solved in a fairly approximate way. The deeper the scale is penetrated by a force-exerting and hydrated agent the more non-gravitational force fields manifest. This can be envisaged in terms of the corresponding thermodynamic (non-Newtonian) forces, and the phenomena of interest are mostly attributed to suitable changes of the osmotic pressure. In low Reynolds number conditions, thus in the (sub)micrometer distance-scale zone, they are related with the corresponding viscosity changes of the aqueous, e.g. cytoplasmatic solutions, of semi-diluted and concentrated (but also electrolytic) characteristics. For example, they can be observed in articulating systems of mammals, in their skin, and to some extent, in other living beings, such as lizards, geckos or even insects. Through their articulating devices an external mechanical stimulus is transmitted from macro- to nanoscale, wherein the corresponding osmotic-pressure conditions apply. The content of the proposed work can be distributed twofold. First, the biomechanical mammalian-type (or, similar) systems with extraordinary relevance of water for their functioning will be presented, also including a presentation of water itself as a key physicochemical system/medium. Second, the suitably chosen related systems, mainly of soil and plant addressing provenience, will be examined thoroughly. As a common denominator of all of them, it is proposed to look at their hydrophobic and/or (de)hydration effects, and how do they impact on their basic mechanical (and related, such as chemo-mechanical or piezoelectric, etc.) properties. An additional tacit assumption employed throughout the monograph concerns statistical scalability of the presented biosystems which is equivalent to take for granted a certain similarity between local and global system's properties, mostly those of mechanical nature. The presented work's chapters also focus on biodiversity and ecological aspects in the world of animals and plants, and the related systems. The chapters' contents underscore the bioinspiration as the key landmark of the proposed monograph.
650
0
$a
Water.
$3
516619
650
0
$a
Biomechanics.
$3
548685
650
1 4
$a
Life Sciences, general.
$3
890967
650
2 4
$a
Biodiversity.
$3
627066
650
2 4
$a
Community & Population Ecology.
$3
900043
650
2 4
$a
Biological and Medical Physics, Biophysics.
$3
3135846
650
2 4
$a
Computer Applications.
$3
891249
650
2 4
$a
Biomedical Engineering and Bioengineering.
$3
3381533
700
1
$a
Gadomski, Adam.
$3
3493725
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Biologically-inspired systems ;
$v
v.17.
$3
3493726
856
4 0
$u
https://doi.org/10.1007/978-3-030-67227-0
950
$a
Biomedical and Life Sciences (SpringerNature-11642)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9401464
電子資源
11.線上閱覽_V
電子書
EB QD169.W3 W384 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入