語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Mathematical foundations for data an...
~
Phillips, Jeff M.
FindBook
Google Book
Amazon
博客來
Mathematical foundations for data analysis
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Mathematical foundations for data analysis/ by Jeff M. Phillips.
作者:
Phillips, Jeff M.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xvii, 287 p. :ill. (some col.), digital ;24 cm.
內容註:
Probability review -- Convergence and sampling -- Linear algebra review -- Distances and nearest neighbors -- Linear Regression -- Gradient descent -- Dimensionality reduction -- Clustering -- Classification -- Graph structured data -- Big data and sketching.
Contained By:
Springer Nature eBook
標題:
Data mining - Mathematics. -
電子資源:
https://doi.org/10.1007/978-3-030-62341-8
ISBN:
9783030623418
Mathematical foundations for data analysis
Phillips, Jeff M.
Mathematical foundations for data analysis
[electronic resource] /by Jeff M. Phillips. - Cham :Springer International Publishing :2021. - xvii, 287 p. :ill. (some col.), digital ;24 cm. - Springer series in the data sciences,2365-5674. - Springer series in the data sciences..
Probability review -- Convergence and sampling -- Linear algebra review -- Distances and nearest neighbors -- Linear Regression -- Gradient descent -- Dimensionality reduction -- Clustering -- Classification -- Graph structured data -- Big data and sketching.
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
ISBN: 9783030623418
Standard No.: 10.1007/978-3-030-62341-8doiSubjects--Topical Terms:
2144379
Data mining
--Mathematics.
LC Class. No.: QA76.9.D343 / P499 2021
Dewey Class. No.: 006.3120151
Mathematical foundations for data analysis
LDR
:02232nmm a2200337 a 4500
001
2239316
003
DE-He213
005
20210715110411.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030623418
$q
(electronic bk.)
020
$a
9783030623401
$q
(paper)
024
7
$a
10.1007/978-3-030-62341-8
$2
doi
035
$a
978-3-030-62341-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
$b
P499 2021
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
006.3120151
$2
23
090
$a
QA76.9.D343
$b
P558 2021
100
1
$a
Phillips, Jeff M.
$3
1064543
245
1 0
$a
Mathematical foundations for data analysis
$h
[electronic resource] /
$c
by Jeff M. Phillips.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xvii, 287 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer series in the data sciences,
$x
2365-5674
505
0
$a
Probability review -- Convergence and sampling -- Linear algebra review -- Distances and nearest neighbors -- Linear Regression -- Gradient descent -- Dimensionality reduction -- Clustering -- Classification -- Graph structured data -- Big data and sketching.
520
$a
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.
650
0
$a
Data mining
$x
Mathematics.
$3
2144379
650
0
$a
Machine learning
$x
Mathematics.
$3
3442737
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
650
2 4
$a
Visualization.
$3
586179
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer series in the data sciences.
$3
2165646
856
4 0
$u
https://doi.org/10.1007/978-3-030-62341-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9401201
電子資源
11.線上閱覽_V
電子書
EB QA76.9.D343 P499 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入