Segmentation, classification, and re...
International Conference on Medical Image Computing and Computer-Assisted Intervention (2020 :)

FindBook      Google Book      Amazon      博客來     
  • Segmentation, classification, and registration of multi-modality medical imaging data = MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020 : proceedings /
  • 紀錄類型: 書目-電子資源 : Monograph/item
    正題名/作者: Segmentation, classification, and registration of multi-modality medical imaging data/ edited by Nadya Shusharina, Mattias P. Heinrich, Ruobing Huang.
    其他題名: MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, held in conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020 : proceedings /
    其他題名: MICCAI 2020
    其他作者: Shusharina, Nadya.
    團體作者: International Conference on Medical Image Computing and Computer-Assisted Intervention
    出版者: Cham :Springer International Publishing : : 2021.,
    面頁冊數: xix, 156 p. :ill., digital ;24 cm.
    內容註: ABCs - Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images -- Cross-modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization -- Domain Knowledge Driven Multi-modal Segmentation of Anatomical Brain Barriers to Cancer Spread -- Ensembled ResUnet for Anatomical Brain Barriers Segmentation -- An Enhanced Coarse-to-_ne Framework for the segmentation of clinical target volume -- Automatic Segmentation of brain structures for treatment planning optimization and target volume definition -- A Bi-Directional, Multi-Modality Framework for Segmentation of Brain Structures -- L2R - Learn2Reg: Multitask and Multimodal 3D Medical Image Registration -- Large Deformation Image Registration with Anatomy-aware Laplacian Pyramid Networks -- Discrete Unsupervised 3D Registration Methods for the Learn2Reg Challenge -- Variable Fraunhofer MEVIS RegLib comprehensively applied to Learn2Reg Challenge -- Learning a deformable registration pyramid -- Deep learning based registration using spatial gradients and noisy segmentation labels -- Multi-step, Learning-based, Semi-supervised Image Registration Algorithm -- Using Elastix to register inhale/exhale intrasubject thorax CT: a unsupervised baseline to the task 2 of the Learn2Reg challenge -- TN-SCUI - Thyroid Nodule Segmentation and Classification in Ultrasound Images -- Cascade Unet and CH-Unet for thyroid nodule segmenation and benign and malignant classification -- Identifying Thyroid Nodules in Ultrasound Images through Segmentation-guided Discriminative Localization -- Cascaded Networks for Thyroid Nodule Diagnosis from Ultrasound Images -- Automatic Segmentation and Classification of Thyroid Nodules in Ultrasound Images with Convolutional Neural Networks -- LRTHR-Net: A Low-Resolution-to-High-Resolution Framework to Iteratively Refine the Segmentation of Thyroid Nodule in Ultrasound Images -- Coarse to Fine Ensemble Network for Thyroid Nodule Segmentation.
    Contained By: Springer Nature eBook
    標題: Diagnostic imaging - Congresses. - Data processing -
    電子資源: https://doi.org/10.1007/978-3-030-71827-5
    ISBN: 9783030718275
館藏地:  出版年:  卷號: 
館藏
  • 1 筆 • 頁數 1 •
 
W9400785 電子資源 11.線上閱覽_V 電子書 EB RC78.7.D53 I57 2020 一般使用(Normal) 在架 0
  • 1 筆 • 頁數 1 •
多媒體
評論
Export
取書館
 
 
變更密碼
登入