語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Financial data resampling for machin...
~
Borges, Tome Almeida.
FindBook
Google Book
Amazon
博客來
Financial data resampling for machine learning based trading = application to cryptocurrency markets /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Financial data resampling for machine learning based trading/ by Tome Almeida Borges, Rui Neves.
其他題名:
application to cryptocurrency markets /
作者:
Borges, Tome Almeida.
其他作者:
Neves, Rui.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xv, 93 p. :ill., digital ;24 cm.
Contained By:
Springer Nature eBook
標題:
Cryptocurrencies - Statistical methods. -
電子資源:
https://doi.org/10.1007/978-3-030-68379-5
ISBN:
9783030683795
Financial data resampling for machine learning based trading = application to cryptocurrency markets /
Borges, Tome Almeida.
Financial data resampling for machine learning based trading
application to cryptocurrency markets /[electronic resource] :by Tome Almeida Borges, Rui Neves. - Cham :Springer International Publishing :2021. - xv, 93 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology, Computational intelligence. - SpringerBriefs in applied sciences and technology.Computational intelligence..
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
ISBN: 9783030683795
Standard No.: 10.1007/978-3-030-68379-5doiSubjects--Topical Terms:
3491609
Cryptocurrencies
--Statistical methods.
LC Class. No.: HG1710.3
Dewey Class. No.: 332.63
Financial data resampling for machine learning based trading = application to cryptocurrency markets /
LDR
:01853nmm a2200325 a 4500
001
2238442
003
DE-He213
005
20210616152705.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030683795
$q
(electronic bk.)
020
$a
9783030683788
$q
(paper)
024
7
$a
10.1007/978-3-030-68379-5
$2
doi
035
$a
978-3-030-68379-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
HG1710.3
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
332.63
$2
23
090
$a
HG1710.3
$b
.B732 2021
100
1
$a
Borges, Tome Almeida.
$3
3491608
245
1 0
$a
Financial data resampling for machine learning based trading
$h
[electronic resource] :
$b
application to cryptocurrency markets /
$c
by Tome Almeida Borges, Rui Neves.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xv, 93 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology, Computational intelligence
520
$a
This book presents a system that combines the expertise of four algorithms, namely Gradient Tree Boosting, Logistic Regression, Random Forest and Support Vector Classifier to trade with several cryptocurrencies. A new method for resampling financial data is presented as alternative to the classical time sampled data commonly used in financial market trading. The new resampling method uses a closing value threshold to resample the data creating a signal better suited for financial trading, thus achieving higher returns without increased risk. The performance of the algorithm with the new resampling method and the classical time sampled data are compared and the advantages of using the system developed in this work are highlighted.
650
0
$a
Cryptocurrencies
$x
Statistical methods.
$3
3491609
650
0
$a
Investments
$x
Statistical methods.
$3
773734
650
0
$a
Resampling (Statistics)
$3
647644
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
700
1
$a
Neves, Rui.
$3
3301933
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
SpringerBriefs in applied sciences and technology.
$p
Computational intelligence.
$3
2054423
856
4 0
$u
https://doi.org/10.1007/978-3-030-68379-5
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9400327
電子資源
11.線上閱覽_V
電子書
EB HG1710.3
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入