語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Convolutional neural networks with S...
~
Koonce, Brett.
FindBook
Google Book
Amazon
博客來
Convolutional neural networks with Swift for Tensorflow = image recognition and dataset categorization /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Convolutional neural networks with Swift for Tensorflow/ by Brett Koonce.
其他題名:
image recognition and dataset categorization /
作者:
Koonce, Brett.
出版者:
Berkeley, CA :Apress : : 2021.,
面頁冊數:
xxi, 245 p. :ill., digital ;24 cm.
內容註:
Chapter 1: MNIST: 1D Neural Network -- Chapter 2: MNIST: 2D Neural Network -- Chapter 3: CIFAR: 2D Nueral Network with Blocks -- Chapter 4: VGG Network -- Chapter 5: Resnet 34 -- Chapter 6: Resnet 50 -- Chapter 7: SqueezeNet -- Chapter 8: MobileNrt v1 -- Chapter 9: MobileNet v2 -- Chapter 10: Evolutionary Strategies -- Chapter 11: MobileNet v3 -- Chapter 12: Bag of Tricks -- Chapter 13: MNIST Revisited -- Chapter 14: You are Here.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science) -
電子資源:
https://doi.org/10.1007/978-1-4842-6168-2
ISBN:
9781484261682
Convolutional neural networks with Swift for Tensorflow = image recognition and dataset categorization /
Koonce, Brett.
Convolutional neural networks with Swift for Tensorflow
image recognition and dataset categorization /[electronic resource] :by Brett Koonce. - Berkeley, CA :Apress :2021. - xxi, 245 p. :ill., digital ;24 cm.
Chapter 1: MNIST: 1D Neural Network -- Chapter 2: MNIST: 2D Neural Network -- Chapter 3: CIFAR: 2D Nueral Network with Blocks -- Chapter 4: VGG Network -- Chapter 5: Resnet 34 -- Chapter 6: Resnet 50 -- Chapter 7: SqueezeNet -- Chapter 8: MobileNrt v1 -- Chapter 9: MobileNet v2 -- Chapter 10: Evolutionary Strategies -- Chapter 11: MobileNet v3 -- Chapter 12: Bag of Tricks -- Chapter 13: MNIST Revisited -- Chapter 14: You are Here.
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.
ISBN: 9781484261682
Standard No.: 10.1007/978-1-4842-6168-2doiSubjects--Uniform Titles:
TensorFlow.
Subjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87 / .K666 2021
Dewey Class. No.: 006.32
Convolutional neural networks with Swift for Tensorflow = image recognition and dataset categorization /
LDR
:02549nmm a2200337 a 4500
001
2237771
003
DE-He213
005
20210630170628.0
006
m d
007
cr nn 008maaau
008
211111s2021 cau s 0 eng d
020
$a
9781484261682
$q
(electronic bk.)
020
$a
9781484261675
$q
(paper)
024
7
$a
10.1007/978-1-4842-6168-2
$2
doi
035
$a
978-1-4842-6168-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.K666 2021
072
7
$a
UMQ
$2
bicssc
072
7
$a
COM051370
$2
bisacsh
072
7
$a
UMQ
$2
thema
072
7
$a
ULH
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.K82 2021
100
1
$a
Koonce, Brett.
$3
3490293
245
1 0
$a
Convolutional neural networks with Swift for Tensorflow
$h
[electronic resource] :
$b
image recognition and dataset categorization /
$c
by Brett Koonce.
260
$a
Berkeley, CA :
$b
Apress :
$b
Imprint: Apress,
$c
2021.
300
$a
xxi, 245 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Chapter 1: MNIST: 1D Neural Network -- Chapter 2: MNIST: 2D Neural Network -- Chapter 3: CIFAR: 2D Nueral Network with Blocks -- Chapter 4: VGG Network -- Chapter 5: Resnet 34 -- Chapter 6: Resnet 50 -- Chapter 7: SqueezeNet -- Chapter 8: MobileNrt v1 -- Chapter 9: MobileNet v2 -- Chapter 10: Evolutionary Strategies -- Chapter 11: MobileNet v3 -- Chapter 12: Bag of Tricks -- Chapter 13: MNIST Revisited -- Chapter 14: You are Here.
520
$a
Dive into and apply practical machine learning and dataset categorization techniques while learning Tensorflow and deep learning. This book uses convolutional neural networks to do image recognition all in the familiar and easy to work with Swift language. It begins with a basic machine learning overview and then ramps up to neural networks and convolutions and how they work. Using Swift and Tensorflow, you'll perform data augmentation, build and train large networks, and build networks for mobile devices. You'll also cover cloud training and the network you build can categorize greyscale data, such as mnist, to large scale modern approaches that can categorize large datasets, such as imagenet. Convolutional Neural Networks with Swift for Tensorflow uses a simple approach that adds progressive layers of complexity until you have arrived at the current state of the art for this field. You will: Categorize and augment datasets Build and train large networks, including via cloud solutions Deploy complex systems to mobile devices.
630
0 0
$a
TensorFlow.
$3
3446650
650
0
$a
Neural networks (Computer science)
$3
532070
650
0
$a
Data sets.
$3
3490294
650
1 4
$a
Apple and iOS.
$3
3167047
650
2 4
$a
Machine Learning.
$3
3382522
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
856
4 0
$u
https://doi.org/10.1007/978-1-4842-6168-2
950
$a
Professional and Applied Computing (SpringerNature-12059)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9399656
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .K666 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入