語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonlinear interval optimization for ...
~
Jiang, Chao.
FindBook
Google Book
Amazon
博客來
Nonlinear interval optimization for uncertain problems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonlinear interval optimization for uncertain problems/ by Chao Jiang, Xu Han, Huichao Xie.
作者:
Jiang, Chao.
其他作者:
Han, Xu.
出版者:
Singapore :Springer Singapore : : 2021.,
面頁冊數:
xii, 284 p. :ill., digital ;24 cm.
內容註:
Introduction -- Fundamentals of interval number theory -- Mathematical transformation models of nonlinear interval optimization -- Interval optimization based on hybrid optimization algorithms -- Interval optimization based on interval structural analysis -- Interval optimization based on sequential linear programming -- Interval optimization based on surrogate models -- Interval multidisciplinary optimization design -- Interval optimization based on a novel interval possibility degree model -- Interval optimization considering parameter dependences -- Interval multi-objective optimization design -- Interval optimization considering tolerance design -- Interval differential evolution algorithm.
Contained By:
Springer Nature eBook
標題:
Engineering mathematics. -
電子資源:
https://doi.org/10.1007/978-981-15-8546-3
ISBN:
9789811585463
Nonlinear interval optimization for uncertain problems
Jiang, Chao.
Nonlinear interval optimization for uncertain problems
[electronic resource] /by Chao Jiang, Xu Han, Huichao Xie. - Singapore :Springer Singapore :2021. - xii, 284 p. :ill., digital ;24 cm. - Springer tracts in mechanical engineering,2195-9862. - Springer tracts in mechanical engineering..
Introduction -- Fundamentals of interval number theory -- Mathematical transformation models of nonlinear interval optimization -- Interval optimization based on hybrid optimization algorithms -- Interval optimization based on interval structural analysis -- Interval optimization based on sequential linear programming -- Interval optimization based on surrogate models -- Interval multidisciplinary optimization design -- Interval optimization based on a novel interval possibility degree model -- Interval optimization considering parameter dependences -- Interval multi-objective optimization design -- Interval optimization considering tolerance design -- Interval differential evolution algorithm.
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
ISBN: 9789811585463
Standard No.: 10.1007/978-981-15-8546-3doiSubjects--Topical Terms:
516847
Engineering mathematics.
LC Class. No.: TA331
Dewey Class. No.: 620.00151
Nonlinear interval optimization for uncertain problems
LDR
:02870nmm a2200337 a 4500
001
2236852
003
DE-He213
005
20201208114834.0
006
m d
007
cr nn 008maaau
008
211111s2021 si s 0 eng d
020
$a
9789811585463
$q
(electronic bk.)
020
$a
9789811585456
$q
(paper)
024
7
$a
10.1007/978-981-15-8546-3
$2
doi
035
$a
978-981-15-8546-3
040
$a
GP
$c
GP
041
1
$a
eng
$h
chi
050
4
$a
TA331
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
072
7
$a
PBU
$2
thema
082
0 4
$a
620.00151
$2
23
090
$a
TA331
$b
.J61 2021
100
1
$a
Jiang, Chao.
$3
3344261
245
1 0
$a
Nonlinear interval optimization for uncertain problems
$h
[electronic resource] /
$c
by Chao Jiang, Xu Han, Huichao Xie.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2021.
300
$a
xii, 284 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer tracts in mechanical engineering,
$x
2195-9862
505
0
$a
Introduction -- Fundamentals of interval number theory -- Mathematical transformation models of nonlinear interval optimization -- Interval optimization based on hybrid optimization algorithms -- Interval optimization based on interval structural analysis -- Interval optimization based on sequential linear programming -- Interval optimization based on surrogate models -- Interval multidisciplinary optimization design -- Interval optimization based on a novel interval possibility degree model -- Interval optimization considering parameter dependences -- Interval multi-objective optimization design -- Interval optimization considering tolerance design -- Interval differential evolution algorithm.
520
$a
This book systematically discusses nonlinear interval optimization design theory and methods. Firstly, adopting a mathematical programming theory perspective, it develops an innovative mathematical transformation model to deal with general nonlinear interval uncertain optimization problems, which is able to equivalently convert complex interval uncertain optimization problems to simple deterministic optimization problems. This model is then used as the basis for various interval uncertain optimization algorithms for engineering applications, which address the low efficiency caused by double-layer nested optimization. Further, the book extends the nonlinear interval optimization theory to design problems associated with multiple optimization objectives, multiple disciplines, and parameter dependence, and establishes the corresponding interval optimization models and solution algorithms. Lastly, it uses the proposed interval uncertain optimization models and methods to deal with practical problems in mechanical engineering and related fields, demonstrating the effectiveness of the models and methods.
650
0
$a
Engineering mathematics.
$3
516847
650
0
$a
Mathematical optimization.
$3
517763
650
0
$a
Aerospace engineering.
$3
1002622
650
1 4
$a
Optimization.
$3
891104
650
2 4
$a
Mathematical and Computational Engineering.
$3
3226306
650
2 4
$a
Aerospace Technology and Astronautics.
$3
928116
650
2 4
$a
Engineering Design.
$3
891033
700
1
$a
Han, Xu.
$3
3437739
700
1
$a
Xie, Huichao.
$0
(orcid)0000-0002-5144-2090
$3
3289749
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Springer tracts in mechanical engineering.
$3
2054724
856
4 0
$u
https://doi.org/10.1007/978-981-15-8546-3
950
$a
Engineering (SpringerNature-11647)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9398737
電子資源
11.線上閱覽_V
電子書
EB TA331
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入