語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A geometric approach to the unificat...
~
Dong, Tiansi.
FindBook
Google Book
Amazon
博客來
A geometric approach to the unification of symbolic structures and neural networks
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A geometric approach to the unification of symbolic structures and neural networks/ by Tiansi Dong.
作者:
Dong, Tiansi.
出版者:
Cham :Springer International Publishing : : 2021.,
面頁冊數:
xxii, 145 p. :ill., digital ;24 cm.
內容註:
Introduction -- The Gap between Symbolic and Connectionist Approaches -- Spatializing Symbolic Structures for the Gap -- The Criteria, Challenges, and the Back-Propagation Method -- Design Principles of Geometric Connectionist Machines -- A Geometric Connectionist Machine for Word-Senses -- Geometric Connectionist Machines for Triple Classification -- Conclusions & Outlooks.
Contained By:
Springer Nature eBook
標題:
Neural networks (Computer science) -
電子資源:
https://doi.org/10.1007/978-3-030-56275-5
ISBN:
9783030562755
A geometric approach to the unification of symbolic structures and neural networks
Dong, Tiansi.
A geometric approach to the unification of symbolic structures and neural networks
[electronic resource] /by Tiansi Dong. - Cham :Springer International Publishing :2021. - xxii, 145 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.9101860-949X ;. - Studies in computational intelligence ;v.910..
Introduction -- The Gap between Symbolic and Connectionist Approaches -- Spatializing Symbolic Structures for the Gap -- The Criteria, Challenges, and the Back-Propagation Method -- Design Principles of Geometric Connectionist Machines -- A Geometric Connectionist Machine for Word-Senses -- Geometric Connectionist Machines for Triple Classification -- Conclusions & Outlooks.
The unification of symbolist and connectionist models is a major trend in AI. The key is to keep the symbolic semantics unchanged. Unfortunately, present embedding approaches cannot. The approach in this book makes the unification possible. It is indeed a new and promising approach in AI. -Bo Zhang, Director of AI Institute, Tsinghua It is indeed wonderful to see the reviving of the important theme Nural Symbolic Model. Given the popularity and prevalence of deep learning, symbolic processing is often neglected or downplayed. This book confronts this old issue head on, with a historical look, incorporating recent advances and new perspectives, thus leading to promising new methods and approaches. -Ron Sun (RPI), on Governing Board of Cognitive Science Society Both for language and humor, approaches like those described in this book are the way to snickerdoodle wombats. -Christian F. Hempelmann (Texas A&M-Commerce) on Executive Board of International Society for Humor Studies.
ISBN: 9783030562755
Standard No.: 10.1007/978-3-030-56275-5doiSubjects--Topical Terms:
532070
Neural networks (Computer science)
LC Class. No.: QA76.87 / .D66 2021
Dewey Class. No.: 006.32
A geometric approach to the unification of symbolic structures and neural networks
LDR
:02463nmm a2200337 a 4500
001
2235666
003
DE-He213
005
20200824205928.0
006
m d
007
cr nn 008maaau
008
211111s2021 sz s 0 eng d
020
$a
9783030562755
$q
(electronic bk.)
020
$a
9783030562748
$q
(paper)
024
7
$a
10.1007/978-3-030-56275-5
$2
doi
035
$a
978-3-030-56275-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.87
$b
.D66 2021
072
7
$a
UYQ
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
072
7
$a
UYQ
$2
thema
082
0 4
$a
006.32
$2
23
090
$a
QA76.87
$b
.D682 2021
100
1
$a
Dong, Tiansi.
$3
3486374
245
1 2
$a
A geometric approach to the unification of symbolic structures and neural networks
$h
[electronic resource] /
$c
by Tiansi Dong.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2021.
300
$a
xxii, 145 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.910
505
0
$a
Introduction -- The Gap between Symbolic and Connectionist Approaches -- Spatializing Symbolic Structures for the Gap -- The Criteria, Challenges, and the Back-Propagation Method -- Design Principles of Geometric Connectionist Machines -- A Geometric Connectionist Machine for Word-Senses -- Geometric Connectionist Machines for Triple Classification -- Conclusions & Outlooks.
520
$a
The unification of symbolist and connectionist models is a major trend in AI. The key is to keep the symbolic semantics unchanged. Unfortunately, present embedding approaches cannot. The approach in this book makes the unification possible. It is indeed a new and promising approach in AI. -Bo Zhang, Director of AI Institute, Tsinghua It is indeed wonderful to see the reviving of the important theme Nural Symbolic Model. Given the popularity and prevalence of deep learning, symbolic processing is often neglected or downplayed. This book confronts this old issue head on, with a historical look, incorporating recent advances and new perspectives, thus leading to promising new methods and approaches. -Ron Sun (RPI), on Governing Board of Cognitive Science Society Both for language and humor, approaches like those described in this book are the way to snickerdoodle wombats. -Christian F. Hempelmann (Texas A&M-Commerce) on Executive Board of International Society for Humor Studies.
650
0
$a
Neural networks (Computer science)
$3
532070
650
0
$a
Logic, Symbolic and mathematical.
$3
532051
650
1 4
$a
Computational Intelligence.
$3
1001631
650
2 4
$a
Machine Learning.
$3
3382522
650
2 4
$a
Mathematical Models of Cognitive Processes and Neural Networks.
$3
1619875
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Studies in computational intelligence ;
$v
v.910.
$3
3486375
856
4 0
$u
https://doi.org/10.1007/978-3-030-56275-5
950
$a
Intelligent Technologies and Robotics (SpringerNature-42732)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9397551
電子資源
11.線上閱覽_V
電子書
EB QA76.87 .D66 2021
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入