語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Metric spaces
~
Copson, E. T. (1901-1980.)
FindBook
Google Book
Amazon
博客來
Metric spaces
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Metric spaces/ E.T. Copson.
作者:
Copson, E. T.
出版者:
Cambridge :Cambridge University Press, : 1968.,
面頁冊數:
143 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
內容註:
Introduction -- Metric spaces -- Open and closed sets -- Complete metric spaces -- Connected sets -- Compactness -- Functions and mappings -- Some applications -- Further developments.
標題:
Metric spaces. -
電子資源:
https://doi.org/10.1017/CBO9780511566141
ISBN:
9780511566141
Metric spaces
Copson, E. T.1901-1980.
Metric spaces
[electronic resource] /E.T. Copson. - Cambridge :Cambridge University Press,1968. - 143 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;57. - Cambridge tracts in mathematics ;57..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
Introduction -- Metric spaces -- Open and closed sets -- Complete metric spaces -- Connected sets -- Compactness -- Functions and mappings -- Some applications -- Further developments.
Metric space topology, as the generalization to abstract spaces of the theory of sets of points on a line or in a plane, unifies many branches of classical analysis and is necessary introduction to functional analysis. Professor Copson's book, which is based on lectures given to third-year undergraduates at the University of St Andrews, provides a more leisurely treatment of metric spaces than is found in books on functional analysis, which are usually written at graduate student level. His presentation is aimed at the applications of the theory to classical algebra and analysis; in particular, the chapter on contraction mappings shows how it provides proof of many of the existence theorems in classical analysis.
ISBN: 9780511566141Subjects--Topical Terms:
546825
Metric spaces.
LC Class. No.: QA613 / .C6 1968
Dewey Class. No.: 513.83
Metric spaces
LDR
:01793nmm a2200289 a 4500
001
2227317
003
UkCbUP
005
20160505175008.0
006
m d
007
cr nn 008maaau
008
210414s1968 enk o 1 0 eng d
020
$a
9780511566141
$q
(electronic bk.)
020
$a
9780521047227
$q
(hardback)
020
$a
9780521357326
$q
(paperback)
035
$a
CR9780511566141
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA613
$b
.C6 1968
082
0 4
$a
513.83
$2
19
090
$a
QA613
$b
.C785 1968
100
1
$a
Copson, E. T.
$q
(Edward Thomas),
$d
1901-1980.
$3
3470584
245
1 0
$a
Metric spaces
$h
[electronic resource] /
$c
E.T. Copson.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
1968.
300
$a
143 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
57
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
Introduction -- Metric spaces -- Open and closed sets -- Complete metric spaces -- Connected sets -- Compactness -- Functions and mappings -- Some applications -- Further developments.
520
$a
Metric space topology, as the generalization to abstract spaces of the theory of sets of points on a line or in a plane, unifies many branches of classical analysis and is necessary introduction to functional analysis. Professor Copson's book, which is based on lectures given to third-year undergraduates at the University of St Andrews, provides a more leisurely treatment of metric spaces than is found in books on functional analysis, which are usually written at graduate student level. His presentation is aimed at the applications of the theory to classical algebra and analysis; in particular, the chapter on contraction mappings shows how it provides proof of many of the existence theorems in classical analysis.
650
0
$a
Metric spaces.
$3
546825
830
0
$a
Cambridge tracts in mathematics ;
$v
57.
$3
3470660
856
4 0
$u
https://doi.org/10.1017/CBO9780511566141
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396745
電子資源
11.線上閱覽_V
電子書
EB QA613 .C6 1968
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入