語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Hardy-Littlewood method
~
Vaughan, R. C.
FindBook
Google Book
Amazon
博客來
The Hardy-Littlewood method
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Hardy-Littlewood method/ R.C. Vaughan.
作者:
Vaughan, R. C.
出版者:
Cambridge :Cambridge University Press, : 1997.,
面頁冊數:
vii, 232 p. :ill., digital ;24 cm.
附註:
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
內容註:
1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k).
標題:
Hardy-Littlewood method. -
電子資源:
https://doi.org/10.1017/CBO9780511470929
ISBN:
9780511470929
The Hardy-Littlewood method
Vaughan, R. C.
The Hardy-Littlewood method
[electronic resource] /R.C. Vaughan. - Second edition. - Cambridge :Cambridge University Press,1997. - vii, 232 p. :ill., digital ;24 cm. - Cambridge tracts in mathematics ;125. - Cambridge tracts in mathematics ;125..
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k).
The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method.
ISBN: 9780511470929Subjects--Topical Terms:
612605
Hardy-Littlewood method.
LC Class. No.: QA241 / .V34 1997
Dewey Class. No.: 512.74
The Hardy-Littlewood method
LDR
:02096nmm a2200289 a 4500
001
2227245
003
UkCbUP
005
20151005020621.0
006
m d
007
cr nn 008maaau
008
210414s1997 enk o 1 0 eng d
020
$a
9780511470929
$q
(electronic bk.)
020
$a
9780521573474
$q
(hardback)
035
$a
CR9780511470929
040
$a
UkCbUP
$b
eng
$c
UkCbUP
$d
GP
041
0
$a
eng
050
4
$a
QA241
$b
.V34 1997
082
0 4
$a
512.74
$2
21
090
$a
QA241
$b
.V364 1997
100
1
$a
Vaughan, R. C.
$3
753025
245
1 4
$a
The Hardy-Littlewood method
$h
[electronic resource] /
$c
R.C. Vaughan.
250
$a
Second edition.
260
$a
Cambridge :
$b
Cambridge University Press,
$c
1997.
300
$a
vii, 232 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Cambridge tracts in mathematics ;
$v
125
500
$a
Title from publisher's bibliographic system (viewed on 05 Oct 2015).
505
0
$a
1. Introduction and historical background -- 2. The simplest upper bound for G(k) -- 3. Goldbach's problems -- 4. The major arcs in Waring's problem -- 5. Vinogradov's methods -- 6. Davenport's methods -- 7. Vinogradov's upper bound for G(k) -- 8. A ternary additive problem -- 9. Homogeneous equations and Birch's theorem -- 10. A theorem of Roth -- 11. Diophantine inequalities -- 12. Wooley's upper bound for G(k).
520
$a
The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method.
650
0
$a
Hardy-Littlewood method.
$3
612605
830
0
$a
Cambridge tracts in mathematics ;
$v
125.
$3
3470561
856
4 0
$u
https://doi.org/10.1017/CBO9780511470929
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396673
電子資源
11.線上閱覽_V
電子書
EB QA241 .V34 1997
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入