語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Missing data analysis in practice
~
Raghunathan, Trivellore.
FindBook
Google Book
Amazon
博客來
Missing data analysis in practice
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Missing data analysis in practice/ Trivellore Raghunathan.
作者:
Raghunathan, Trivellore.
出版者:
Boca Raton, FL :CRC Press, Taylor & Francis Group, : c2016.,
面頁冊數:
1 online resource (xix, 210 p.) :ill.
附註:
"A Chapman & Hall book"--title page.
內容註:
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
標題:
Mathematical statistics. -
電子資源:
https://www.taylorfrancis.com/books/9780429171673
ISBN:
9781482211931
Missing data analysis in practice
Raghunathan, Trivellore.
Missing data analysis in practice
[electronic resource] /Trivellore Raghunathan. - 1st ed. - Boca Raton, FL :CRC Press, Taylor & Francis Group,c2016. - 1 online resource (xix, 210 p.) :ill. - Chapman & Hall/CRC interdisciplinary statistics series. - Interdisciplinary statistics..
"A Chapman & Hall book"--title page.
Includes bibliographical references (p. 187-203)
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
"Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online. The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference"--
ISBN: 9781482211931
LCCN: 2016302652Subjects--Topical Terms:
516858
Mathematical statistics.
LC Class. No.: QA276 / .R26 2015
Dewey Class. No.: 519.5
Missing data analysis in practice
LDR
:02321cmm a2200313 a 4500
001
2225180
005
20160907161409.0
006
m o d
007
cr cnu---unuuu
008
210205s2016 flua ob 000 0 eng d
010
$a
2016302652
020
$a
9781482211931
$q
(electronic bk.)
020
$a
9781482211924
$q
(hardback)
020
$a
1482211920
$q
(hardback)
035
$a
fly19173142
040
$a
BTCTA
$b
eng
$c
BTCTA
$d
BDX
$d
YDXCP
$d
OCLCO
$d
KSU
$d
OCLCQ
$d
DGU
$d
EYM
$d
OCLCF
$d
CDX
$d
OCLCQ
$d
DLC
041
0
$a
eng
050
0 0
$a
QA276
$b
.R26 2015
082
0 4
$a
519.5
$2
23
100
1
$a
Raghunathan, Trivellore.
$3
2184938
245
1 0
$a
Missing data analysis in practice
$h
[electronic resource] /
$c
Trivellore Raghunathan.
250
$a
1st ed.
260
$a
Boca Raton, FL :
$b
CRC Press, Taylor & Francis Group,
$c
c2016.
300
$a
1 online resource (xix, 210 p.) :
$b
ill.
490
1
$a
Chapman & Hall/CRC interdisciplinary statistics series
500
$a
"A Chapman & Hall book"--title page.
504
$a
Includes bibliographical references (p. 187-203)
505
0
$a
Basic concepts -- Weighting methods -- Imputation -- Multiple imputation -- Regression analysis -- Longitudinal analysis with missing values -- Nonignorable missing data mechanisms -- Other applications -- Other topics.
520
$a
"Missing Data Analysis in Practice provides practical methods for analyzing missing data along with the heuristic reasoning for understanding the theoretical underpinnings. Drawing on his 25 years of experience researching, teaching, and consulting in quantitative areas, the author presents both frequentist and Bayesian perspectives. He describes easy-to-implement approaches, the underlying assumptions, and practical means for assessing these assumptions. Actual and simulated data sets illustrate important concepts, with the data sets and codes available online. The book underscores the development of missing data methods and their adaptation to practical problems. It mainly focuses on the traditional missing data problem. The author also shows how to use the missing data framework in many other statistical problems, such as measurement error, finite population inference, disclosure limitation, combing information from multiple data sources, and causal inference"--
$c
Provided by publisher.
588
$a
Description based on print version record.
650
0
$a
Mathematical statistics.
$3
516858
650
0
$a
Missing observations (Statistics)
$3
566005
830
0
$a
Interdisciplinary statistics.
$3
626308
856
4 0
$u
https://www.taylorfrancis.com/books/9780429171673
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9396509
電子資源
11.線上閱覽_V
電子書
EB QA276
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入