語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
EEG brain signal classification for ...
~
Satapathy, Sandeep Kumar,
FindBook
Google Book
Amazon
博客來
EEG brain signal classification for epileptic seizure disorder detection
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
EEG brain signal classification for epileptic seizure disorder detection/ Sandeep Kumar Satapathy, Satchidananda Dehuri, Alok KumarJagadev, Shruti Mishra.
作者:
Satapathy, Sandeep Kumar,
其他作者:
Dehuri, Satchidananda,
出版者:
London, United Kingdom :Academic Press, an imprint of Elsevier, : 2019.,
面頁冊數:
1 online resource.
內容註:
1.5. Swarm Intelligence1.6. Tools for Feature Extraction; 1.7. Contributions; 1.8. Summary and Structure of Book; Chapter 2: Literature Survey; 2.1. EEG Signal Analysis Methods; 2.2. Preprocessing of EEG Signal; 2.3. Tasks of EEG Signal; 2.4. Classical vs Machine Learning Methods for EEG Classification; 2.5. Machine Learning Methods for Epilepsy Classification; 2.6. Summary; Chapter 3: Empirical Study on the Performance of the Classifiers in EEG Classification; 3.1. Multilayer Perceptron Neural Network; 3.1.1. MLPNN With Back-Propagation; 3.1.2. MLPNN With Resilient Propagation
內容註:
3.1.3. MLPNN With Manhattan Update Rule3.2. Radial Basis Function Neural Network; 3.3. Probabilistic Neural Network; 3.4. Recurrent Neural Network; 3.5. Support Vector Machines; 3.6. Experimental Study; 3.6.1. Datasets and Environment; 3.6.2. Parameters; 3.6.3. Results and Analysis; 3.7. Summary; Chapter 4: EEG Signal Classification Using RBF Neural Network Trained With Improved PSO Algorithm for Epilepsy Identification; 4.1. Related Work; 4.2. Radial Basis Function Neural Network; 4.2.1. RBFNN Architecture; 4.2.2. RBFNN Training Algorithm; 4.3. Particle Swarm Optimization
內容註:
4.3.1. Architecture4.3.2. Algorithm; 4.4. RBFNN With Improved PSO Algorithm; 4.4.1. Architecture of Proposed Model; 4.4.2. Algorithm for Proposed Model; 4.5. Experimental Study; 4.5.1. Dataset Preparation and Environment; 4.5.2. Parameters; 4.5.3. Results and Analysis; 4.6. Summary; Chapter 5: ABC Optimized RBFNN for Classification of EEG Signal for Epileptic Seizure Identification; 5.1. Related Work; 5.2. Artificial Bee Colony Algorithm; 5.2.1. Architecture; 5.2.2. Algorithm; 5.3. RBFNN With Improved ABC Algorithm; 5.3.1. Architecture of the Proposed Model
內容註:
5.3.2. Algorithm for the Proposed Model5.4. Experimental Study; 5.4.1. Dataset Preparation and Environment; 5.4.2. Parameters; 5.4.3. Result and Analysis; 5.4.4. Performance Comparison Between Modified PSO and Modified ABC Algorithm; 5.5. Summary; Chapter 6: Conclusion and Future Research; 6.1. Findings and Constraints; 6.2. Future Research Work; References; Index; Back Cover
標題:
Epilepsy - Diagnosis. -
電子資源:
https://www.sciencedirect.com/science/book/9780128174265
ISBN:
9780128174272 (electronic bk.)
EEG brain signal classification for epileptic seizure disorder detection
Satapathy, Sandeep Kumar,
EEG brain signal classification for epileptic seizure disorder detection
[electronic resource] /Sandeep Kumar Satapathy, Satchidananda Dehuri, Alok KumarJagadev, Shruti Mishra. - London, United Kingdom :Academic Press, an imprint of Elsevier,2019. - 1 online resource.
Includes bibliographical references and index.
1.5. Swarm Intelligence1.6. Tools for Feature Extraction; 1.7. Contributions; 1.8. Summary and Structure of Book; Chapter 2: Literature Survey; 2.1. EEG Signal Analysis Methods; 2.2. Preprocessing of EEG Signal; 2.3. Tasks of EEG Signal; 2.4. Classical vs Machine Learning Methods for EEG Classification; 2.5. Machine Learning Methods for Epilepsy Classification; 2.6. Summary; Chapter 3: Empirical Study on the Performance of the Classifiers in EEG Classification; 3.1. Multilayer Perceptron Neural Network; 3.1.1. MLPNN With Back-Propagation; 3.1.2. MLPNN With Resilient Propagation
ISBN: 9780128174272 (electronic bk.)Subjects--Topical Terms:
834429
Epilepsy
--Diagnosis.Index Terms--Genre/Form:
542853
Electronic books.
LC Class. No.: RC373
Dewey Class. No.: 616.85/307547
EEG brain signal classification for epileptic seizure disorder detection
LDR
:03150cmm a2200289 a 4500
001
2223278
006
o d
007
cnu|unuuu||
008
210114s2019 enk ob 001 0 eng d
020
$a
9780128174272 (electronic bk.)
020
$a
0128174277 (electronic bk.)
020
$a
9780128174265 (pbk.)
035
$a
(OCoLC)1086612874
035
$a
EL2020008
040
$a
OPELS
$b
eng
$c
OPELS
$d
EBLCP
$d
N$T
$d
OCLCF
$d
OCLCQ
041
0
$a
eng
050
4
$a
RC373
082
0 4
$a
616.85/307547
$2
23
100
1
$a
Satapathy, Sandeep Kumar,
$e
author.
$3
3462549
245
1 0
$a
EEG brain signal classification for epileptic seizure disorder detection
$h
[electronic resource] /
$c
Sandeep Kumar Satapathy, Satchidananda Dehuri, Alok KumarJagadev, Shruti Mishra.
260
$a
London, United Kingdom :
$b
Academic Press, an imprint of Elsevier,
$c
2019.
300
$a
1 online resource.
504
$a
Includes bibliographical references and index.
505
8
$a
1.5. Swarm Intelligence1.6. Tools for Feature Extraction; 1.7. Contributions; 1.8. Summary and Structure of Book; Chapter 2: Literature Survey; 2.1. EEG Signal Analysis Methods; 2.2. Preprocessing of EEG Signal; 2.3. Tasks of EEG Signal; 2.4. Classical vs Machine Learning Methods for EEG Classification; 2.5. Machine Learning Methods for Epilepsy Classification; 2.6. Summary; Chapter 3: Empirical Study on the Performance of the Classifiers in EEG Classification; 3.1. Multilayer Perceptron Neural Network; 3.1.1. MLPNN With Back-Propagation; 3.1.2. MLPNN With Resilient Propagation
505
8
$a
3.1.3. MLPNN With Manhattan Update Rule3.2. Radial Basis Function Neural Network; 3.3. Probabilistic Neural Network; 3.4. Recurrent Neural Network; 3.5. Support Vector Machines; 3.6. Experimental Study; 3.6.1. Datasets and Environment; 3.6.2. Parameters; 3.6.3. Results and Analysis; 3.7. Summary; Chapter 4: EEG Signal Classification Using RBF Neural Network Trained With Improved PSO Algorithm for Epilepsy Identification; 4.1. Related Work; 4.2. Radial Basis Function Neural Network; 4.2.1. RBFNN Architecture; 4.2.2. RBFNN Training Algorithm; 4.3. Particle Swarm Optimization
505
8
$a
4.3.1. Architecture4.3.2. Algorithm; 4.4. RBFNN With Improved PSO Algorithm; 4.4.1. Architecture of Proposed Model; 4.4.2. Algorithm for Proposed Model; 4.5. Experimental Study; 4.5.1. Dataset Preparation and Environment; 4.5.2. Parameters; 4.5.3. Results and Analysis; 4.6. Summary; Chapter 5: ABC Optimized RBFNN for Classification of EEG Signal for Epileptic Seizure Identification; 5.1. Related Work; 5.2. Artificial Bee Colony Algorithm; 5.2.1. Architecture; 5.2.2. Algorithm; 5.3. RBFNN With Improved ABC Algorithm; 5.3.1. Architecture of the Proposed Model
505
8
$a
5.3.2. Algorithm for the Proposed Model5.4. Experimental Study; 5.4.1. Dataset Preparation and Environment; 5.4.2. Parameters; 5.4.3. Result and Analysis; 5.4.4. Performance Comparison Between Modified PSO and Modified ABC Algorithm; 5.5. Summary; Chapter 6: Conclusion and Future Research; 6.1. Findings and Constraints; 6.2. Future Research Work; References; Index; Back Cover
588
0
$a
Online resource; title from PDF title page (ScienceDirect, viewed February 21, 2019).
650
0
$a
Epilepsy
$x
Diagnosis.
$3
834429
650
0
$a
Electroencephalography.
$3
543293
650
0
$a
Electrophysiological aspects of epilepsy.
$3
3462553
655
4
$a
Electronic books.
$2
lcsh
$3
542853
700
1
$a
Dehuri, Satchidananda,
$e
author.
$3
3462550
700
1
$a
Jagadev, Alok Kumar,
$e
author.
$3
3462551
700
1
$a
Mishra, Shruti,
$e
author.
$3
3462552
856
4 0
$u
https://www.sciencedirect.com/science/book/9780128174265
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9395809
電子資源
11.線上閱覽_V
電子書
EB RC373
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入