語系:
繁體中文
English
說明(常見問題)
回圖書館首頁
手機版館藏查詢
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Quantification of uncertainty = impr...
~
International Workshop "Quantification of Uncertainty: Improving Efficiency and Technology" ((2017 :)
FindBook
Google Book
Amazon
博客來
Quantification of uncertainty = improving efficiency and technology : QUIET selected contributions /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Quantification of uncertainty/ edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza.
其他題名:
improving efficiency and technology : QUIET selected contributions /
其他題名:
QUIET 2017
其他作者:
D'Elia, Marta.
團體作者:
International Workshop "Quantification of Uncertainty: Improving Efficiency and Technology"
出版者:
Cham :Springer International Publishing : : 2020.,
面頁冊數:
xi, 282 p. :ill., digital ;24 cm.
內容註:
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
Contained By:
Springer Nature eBook
標題:
Uncertainty (Information theory) - Congresses. - Mathematical models -
電子資源:
https://doi.org/10.1007/978-3-030-48721-8
ISBN:
9783030487218
Quantification of uncertainty = improving efficiency and technology : QUIET selected contributions /
Quantification of uncertainty
improving efficiency and technology : QUIET selected contributions /[electronic resource] :QUIET 2017edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza. - Cham :Springer International Publishing :2020. - xi, 282 p. :ill., digital ;24 cm. - Lecture notes in computational science and engineering,1371439-7358 ;. - Lecture notes in computational science and engineering ;137..
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
ISBN: 9783030487218
Standard No.: 10.1007/978-3-030-48721-8doiSubjects--Topical Terms:
3461659
Uncertainty (Information theory)
--Mathematical models--Congresses.
LC Class. No.: Q375
Dewey Class. No.: 519.54
Quantification of uncertainty = improving efficiency and technology : QUIET selected contributions /
LDR
:03170nmm a2200349 a 4500
001
2222687
003
DE-He213
005
20201117092431.0
006
m d
007
cr nn 008maaau
008
210108s2020 sz s 0 eng d
020
$a
9783030487218
$q
(electronic bk.)
020
$a
9783030487201
$q
(paper)
024
7
$a
10.1007/978-3-030-48721-8
$2
doi
035
$a
978-3-030-48721-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q375
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT006000
$2
bisacsh
072
7
$a
PBKS
$2
thema
082
0 4
$a
519.54
$2
23
090
$a
Q375
$b
.I61 2017
111
2
$a
International Workshop "Quantification of Uncertainty: Improving Efficiency and Technology"
$d
(2017 :
$c
Trieste, Italy)
$3
3461655
245
1 0
$a
Quantification of uncertainty
$h
[electronic resource] :
$b
improving efficiency and technology : QUIET selected contributions /
$c
edited by Marta D'Elia, Max Gunzburger, Gianluigi Rozza.
246
3
$a
QUIET 2017
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2020.
300
$a
xi, 282 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in computational science and engineering,
$x
1439-7358 ;
$v
137
505
0
$a
1. Adeli, E. et al., Effect of Load Path on Parameter Identification for Plasticity Models using Bayesian Methods -- 2. Brugiapaglia S., A compressive spectral collocation method for the diffusion equation under the restricted isometry property -- 3. D'Elia, M. et al., Surrogate-based Ensemble Grouping Strategies for Embedded Sampling-based Uncertainty Quantification -- 4. Afkham, B.M. et al., Conservative Model Order Reduction for Fluid Flow -- 5. Clark C.L. and Winter C.L., A Semi-Markov Model of Mass Transport through Highly Heterogeneous Conductivity Fields -- 6. Matthies, H.G., Analysis of Probabilistic and Parametric Reduced Order Models -- 7. Carraturo, M. et al., Reduced Order Isogeometric Analysis Approach for PDEs in Parametrized Domains -- 8. Boccadifuoco, A. et al., Uncertainty quantification applied to hemodynamic simulations of thoracic aorta aneurysms: sensitivity to inlet conditions -- 9. Anderlini, A.et al., Cavitation model parameter calibration for simulations of three-phase injector flows -- 10. Hijazi, S. et al., Non-Intrusive Polynomial Chaos Method Applied to Full-Order and Reduced Problems in Computational Fluid Dynamics: a Comparison and Perspectives -- 11. Bulte, M. et al., A practical example for the non-linear Bayesian filtering of model parameters.
520
$a
This book explores four guiding themes - reduced order modelling, high dimensional problems, efficient algorithms, and applications - by reviewing recent algorithmic and mathematical advances and the development of new research directions for uncertainty quantification in the context of partial differential equations with random inputs. Highlighting the most promising approaches for (near-) future improvements in the way uncertainty quantification problems in the partial differential equation setting are solved, and gathering contributions by leading international experts, the book's content will impact the scientific, engineering, financial, economic, environmental, social, and commercial sectors.
650
0
$a
Uncertainty (Information theory)
$x
Mathematical models
$v
Congresses.
$3
3461659
650
0
$a
Differential equations, Partial
$v
Congresses.
$3
560940
650
1 4
$a
Computational Mathematics and Numerical Analysis.
$3
891040
650
2 4
$a
Mathematical and Computational Engineering.
$3
3226306
650
2 4
$a
Simulation and Modeling.
$3
890873
700
1
$a
D'Elia, Marta.
$3
3461656
700
1
$a
Gunzburger, Max.
$3
3461657
700
1
$a
Rozza, Gianluigi.
$3
1621072
710
2
$a
SpringerLink (Online service)
$3
836513
773
0
$t
Springer Nature eBook
830
0
$a
Lecture notes in computational science and engineering ;
$v
137.
$3
3461658
856
4 0
$u
https://doi.org/10.1007/978-3-030-48721-8
950
$a
Mathematics and Statistics (SpringerNature-11649)
筆 0 讀者評論
館藏地:
全部
電子資源
出版年:
卷號:
館藏
1 筆 • 頁數 1 •
1
條碼號
典藏地名稱
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
W9395562
電子資源
11.線上閱覽_V
電子書
EB Q375
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
評論
新增評論
分享你的心得
Export
取書館
處理中
...
變更密碼
登入