De Rham cohomology of differential m...
Andre, Yves.

Linked to FindBook      Google Book      Amazon      博客來     
  • De Rham cohomology of differential modules on algebraic varieties
  • Record Type: Electronic resources : Monograph/item
    Title/Author: De Rham cohomology of differential modules on algebraic varieties/ by Yves Andre, Francesco Baldassarri, Maurizio Cailotto.
    Author: Andre, Yves.
    other author: Baldassarri, Francesco.
    Published: Cham :Springer International Publishing : : 2020.,
    Description: xiv, 241 p. :ill., digital ;24 cm.
    [NT 15003449]: 1 Regularity in several variables -- §1 Geometric models of divisorially valued function fields -- §2 Logarithmic differential operators -- §3 Connections regular along a divisor -- §4 Extensions with logarithmic poles -- §5 Regular connections: the global case -- §6 Exponents -- Appendix A: A letter of Ph. Robba (Nov. 2, 1984) -- Appendix B: Models and log schemes -- 2 Irregularity in several variables -- §1 Spectral norms -- §2 The generalized Poincare-Katz rank of irregularity -- §3 Some consequences of the Turrittin-Levelt-Hukuhara theorem -- §4 Newton polygons -- §5 Stratification of the singular locus by Newton polygons -- §6 Formal decomposition of an integrable connection at a singular divisor -- §7 Cyclic vectors, indicial polynomials and tubular neighborhoods -- 3 Direct images (the Gauss-Manin connection) -- §1 Elementary fibrations -- §2 Review of connections and De Rham cohomology -- §3 Devissage -- §4 Generic finiteness of direct images -- §5 Generic base change for direct images -- §6 Coherence of the cokernel of a regular connection -- §7 Regularity and exponents of the cokernel of a regular connection -- §8 Proof of the main theorems: finiteness, regularity, monodromy, base change (in the regular case) -- Appendix C: Berthelot's comparison theorem on OXDX-linear duals -- Appendix D: Introduction to Dwork's algebraic dual theory -- 4 Complex and p-adic comparison theorems -- §1 Review of analytic connections and De Rham cohomology -- §2 Abstract comparison criteria -- §3 Comparison theorem for algebraic vs.complex-analytic cohomology -- §4 Comparison theorem for algebraic vs. rigid-analytic cohomology (regular coefficients) -- §5 Rigid-analytic comparison theorem in relative dimension one -- §6 Comparison theorem for algebraic vs. rigid-analytic cohomology (irregular coefficients) -- §7 The relative non-archimedean Turrittin theorem -- Appendix E: Riemann's "existence theorem" in higher dimension, an elementary approach -- References.
    Contained By: Springer Nature eBook
    Subject: Homology theory. -
    Online resource: https://doi.org/10.1007/978-3-030-39719-7
    ISBN: 9783030397197
Location:  Year:  Volume Number: 
Items
  • 1 records • Pages 1 •
 
W9395535 電子資源 11.線上閱覽_V 電子書 EB QA612.3 .A537 2020 一般使用(Normal) On shelf 0
  • 1 records • Pages 1 •
Multimedia
Reviews
Export
pickup library
 
 
Change password
Login